Archive | Palaeoanthropology RSS feed for this section

Skeletal Series: The Basic Human Osteology Glossary

19 Dec

Introducing the Human Osteology Glossary

It is important for the budding human osteology student that they understand and correctly apply the basic terms used in the discipline to help identify and describe the skeletal anatomy under study.  Since human osteologists study the skeletal remains of anatomically modern humans (Homo sapiens) the terminology used, specifically the anatomical terminology, has to be precise and correct as befitting the medical use of such terms.

Human osteology remains the foundation on which the disciplines of forensic anthropology and bioarchaeology are built upon, although it is noted that the disciplines can be misleading across international divides.  For example, in the United Kingdom bioarchaeology is still used to refer to the study of both human and non-human skeleton remains from archaeological sites, whilst bioarchaeology in the United States normally refers to human remains only.  It should also be noted here that the other related disciplines, such as palaeoanthropology and biological anthropology, study not just the modern human skeleton but also the skeletal and fossilized remains of extant (genera such as Pan, Pongo and Gorilla) and extinct hominins.  Nevertheless the terminology remains the same when describing the skeletal anatomy of both human and non-human individuals.

Glossary Arrangement

This short glossary is intended to provide a basic introduction to the terminology used in the disciplines that utilizes human osteology as a core focus for the research undertaken.  The terminology documented here also includes a brief description of the word and, where possible, an example of its use.  Primarily the glossary acts as a reference post in order to be used in conjunction with the Skeletal Series posts on this site, which help outline and introduce each skeletal element of the human body section by section and as appropriate.  However please note that the glossary is also arranged in a manner in which it befits the student who needs to quickly scan the list in order to find a specific and relevant word.

Therefore the glossary is arranged in a thematic presentation as follows:

1. Discipline Definitions
2. The Human Body:
– a) Macro
– b) Micro
– c) Growth
– d) Disease and Trauma
3. Anatomical Foundations:
– a) Anatomical Planes of Reference
– b) Directional Terminology
– c) Movement Terminology
4. Postmortem Skeletal Change
– a) Postmortem Skeletal Change

The glossary ends with an introduction to the terminology used to describe the postmortem aspects of body deposition.  This is because it is an important aspect and consideration of any skeletal analysis undertaken.  The terminology used in this section leads away from the strictly anatomical terminology of the sections above it and introduces some terms that are used in archaeology and associated disciplines.

Reference Note

Please note that the bibliography provided indicates a number of important texts from which this glossary was compiled.  The key text books highlighted also introduce the study of the human skeleton, from a number of different perspectives, including the gross anatomical, bioarchaeological and human evolutionary perspectives.  Find a copy of the books at your library or order a copy and become engrossed in the beauty of the bones and the evidence of life histories that they can hold.

The Glossary:

1) – Discipline Definitions

Bioanthropology:  A scientific discipline concerned with the biological and behavioral aspects of human beings, their related non-human primates, such as gorillas and chimpanzees, and their extinct hominin ancestors.  (Related Physical Anthropology).

Bioarchaeology:  The study of human and non-human skeletal remains from archaeological sites.  In the United States of America this term is used solely for the study of human skeletal remains from archaeological sites.

Forensic Anthropology:  An applied anthropological approach dealing with human remains in legal contexts.  Forensic anthropologists often work with coroners and others, such as disaster victim identification teams, in analysing and identifying human remains (both soft and hard tissues) from a variety of contexts including but not limited ID’ing remains from natural disasters, police contexts, war zones, genocides, human rights violations, etc.

Human Osteology:  The study of human skeletal material.  Focuses on the scientific interpretation of skeletal remains from archaeological sites, including the study of the skeletal anatomy, bone physiology, and the growth and development of the skeleton itself.   

Palaeoanthropology:  The interdisciplinary study of earlier hominins.  This includes the study of their chronology, physical structure and skeletal anatomy, archaeological remains, geographic spans, etc. (Jurmain et al. 2011).

Physical Anthropology:  Concerned with the biological skeletal remains of both humans and extant and extinct hominins, anatomy, and evidence of behaviour.  The discipline is often considered congruent with the term bioanthropology, or biological anthropology.  (Related Bioanthropology).

2) a. – The Human Body: Macro

Appendicular Skeleton:  The skeletal bones of the limbs.  Includes the shoulder and pelvic girdles, however it does not include the sacrum.  Skeleton SK423 largely consisted of the non-fragmented disarticulated appendicular elements.

Axial Skeleton:  The skeletal elements of the trunk of the body.  Includes the ribs, vertebrae and sternum.  The body of SK424 was particularly fragmented in-situ, with little sign of excavation or post-excavation damage evidenced on the axial skeleton suggesting fragmentation post-burial.

Cortical (Compact) Bone:  The solid and dense bone found in the bone shafts and on the external surfaces of bone itself.  The cortical bone of the mid-shaft of the right humerus of the tennis player displayed increased thickening.  This is, in this individuals case whose physical history is known, due to the predominance of the right arm during intense and long-term use in physical exercise (see Wolff’s Law). 

Dentin (Dentine):  Calcified but slightly resilient dental connective tissue.  In human growth primary dentin appears during growth whereas secondary dentin forms after the root formation of the tooth is complete (White & Folkens 2005: 421).

Diaphysis:  The shaft portion of a long bone.  The diaphysis of the femur is one of the longest shafts found in the human skeleton, as the femur is the longest bone.

Dry Bone:  Refers to archaeological bone where no soft, or wet, tissue survives, hence the bone is dry.  It should be noted that, when subject to x-rays for investigation, archaeological dry bone radiological images are improved due to a lack of soft tissues obscuring the bone condition.

Elements (Skeletal):  Used to refer to each individual bone.  The human adult body has, on average, 206 individual skeletal elements.

Enamel:  Enamel is an extremely hard brittle material which covers the crown of a tooth.

Endosteum:  A largely cellular membrane that lines the inner surface of bones which is ill-defined (White & Folkens 2005: 421).

Epiphysis:  The epiphysis refers to the often proximal and distal ‘caps’ of long bones that develop from a secondary ossification centre.  The epiphysis of the long bones can, when used in conjunction with other skeletal markers of aging, particularly dentition, provide a highly accurate  age-at-death in non-adult human skeletal remains.

Medullary Cavity:  The cavity found inside the shaft of a long bone.  The medullary cavity of the femur is the site of the longest medullary cavity found in the human body.  The medullary cavity is the location where red and yellow bone marrow is stored and where the red and white blood cells are produced. 

Metaphyses:  The metaphyses refer to the expanded and flared ends of the shaft (or diaphysis) of long bones.  Both the femoral and humeral diaphyses display flared distal metaphyses which are indicative of their anatomical positioning.

Morphology:  The form and structure of an object.  The morphology of the femora is dictated by a variety of factors, not least the size, age, sex and weight of the individual.

Musculoskeletal System:  The musculoskeletal system provides the bony framework of the body in which the muscles attach onto and are able to leverage bones to induce movement.  The musculoskeletal system is responsible for a number of core bodily functions, including blood production and nourishment, alongside providing a stable and safe environment for vital organs.

Osteology:  The scientific study of bone.  Bones form the basis of the skeletal system of vertebrate animals, including humans.  In the United States of America bioarchaeology refers to the study of human bones within an archaeological context.

Periosteum:  The thin dense vascular connective tissue that covers the outer surfaces of bone during life, except on areas of articulation.  The periosteum tissue plays an important part in the maintenance of healthy bone, helping to also provide the body with blood via the bone marrow and associated vessels.  The periosteum provides an important area of osteogensis following a bone fracture.

Postcranial Skeleton:  All bones but the mandible and cranium.  The postcranial skeleton of SK543 was exceptionally well-preserved within the grave context but due to grave cutting the cranium and mandible were completely disturbed and not present within the context recorded.

Trabecular (Spongy) Bone:  Refers to the honeycomb like structure of bone found within the cavity of bones themselves.

2) b. – The Human Body: Micro

Cartilage:  Cartilage is a flexible connective tissue which consists of cells embedded in a matrix.  In the human skeletal system cartilage is found between joints, such as the knee and in forms such as the intervertebral disk in the spine and in the ribcage.  There are three types of cartilage: hyaline, fibrocartilage and elastic cartilage in the human skeletal system, although 28 different types of cartilage have now been identified in the human body as a whole (Gosling et al. 2008:9).

Collagen:  Collagen is a fibrous structural tissue in the skeleton which constitutes up to 90% of bone’s organic content (White & Folkens 2005: 42).

Haversian Canal (Secondary Osteons):  Microscopic canals found in compact, or cortical, bone that contain blood, nerve and lymph vessels, alongside marrow.

Hydroxyapatite:  A dense, inorganic, mineral matrix which helps form the second component of bone.  Together with collagen hydroxyapatite gives bone the unique ability to withstand and respond to physical stresses.

Lamellar (Mature) Bone:  Bone in which the ‘microscopic structure is characterized by collagen fibres arranged in layers or sheets around Haversian canals’ (White & Folkens 2005: 423).  Lamellar bone is mechanically strong.  Related woven (immature) bone.

Osteoblast:  Osteoblasts are the ‘bone-forming cells which are responsible for synthesizing and depositing bone material’ (White & Folkens 2005: 424).

Osteoclast:  Osteoclasts are the cells responsible for the resorption of bone tissue.

Osteocyte:  Osteocytes are the living bone cell which is developed from an osteoblast (White & Folkens 2005: 424).

Osteon:  The osteon is a Haversian system, ‘a structural unit of compact bone composed of a central vascular (Haversian) canal and the concentric lamellae surrounding it; a Primary Osteon is composed of a vascular canal without a cement line, whereas the cement line and lamellar bone organized around the central canal characterize a Secondary Osteon‘ (White & Folkens 2005: 424).

Remodeling:  Remodeling is the cyclical process of bone resorption and bone deposition at one site.  The human skeleton continually remodels itself throughout life, and after full growth has been achieved towards the end of puberty.  Further to this bone is a tissue that responds to physical stress and remodels as appropriate. 

Woven (Immature) Bone:  characterized by the haphazard organisation of collagen fibres.  Primarily laid down following a fracture and later replaced by lamellar bone.  Woven bone is mechanically weak.  Related lamellar (mature) bone.

2) c. – The Human Body: Growth

Appositional Growth:  The process by which old bone that lines the medullary cavity is reabsorbed and new bone tissue is grown beneath the periosteum, which increases the bone diameter.

Endochondral Ossification:  One of two main processes of bone development in which cartilage precursors (called cartilage models) are gradually replaced by bone tissue (White & Folkens 2005: 421).

Epiphyseal (Growth) Plate:  The hyaline cartilage plate found at the metaphyses of the long bones during growth of the individual (i.e. non-adults), where bone growth is focused until full growth cycle has been completed.

Idiosyncratic:  Referring to the individual.  The normal morphology of the human skeleton, and its individual elements, is influenced by three main factors of variation: biological sex (sexual dimorphism), ontogenetic (age), and idiosyncratic (individual) factors.

Intramembranous Ossification:  One of two main processes of ‘bone development in which bones ossify by apposition on tissue within an embryonic connective tissue membrane’ (White & Folkens 2005: 422).

Ontogeny:  The growth, or development, of an individual.  Ontogeny can be a major factor in the morphological presentation of the human skeleton.

Osteogenesis:  The formation and development of bone.  Embryologically the development of bone ossification occurs during two main processes: intramembranous and endochondral ossification.

Wolff’s Law:  Theory developed by German anatomist and surgeon Julius Wolff (1836-1902) which stated that human and non-human bone responded to the loads, or stresses, under to which it is placed and remodels appropriately within a healthy individual.

Sexual Dimorphism:  The differences between males and females.  The human skeleton has, compared to some animal species, discrete differences in sexual dimorphism; however there are distinct functional differences in the morphology of certain elements which can be used to determine biological sex of the individual post-puberty.

2) d. – The Human Body: Disease and Trauma

Atrophy:  The wastage of an organ or body tissue due to non-use.  Atrophy can be an outcome of disease processes in which the nerves are damaged, leading to the extended, or permanent, non-use of a limb which can lead to muscle wastage and bone resorption.

Blastic Lesion: Expansive bone lesion in which bone is abnormally expanded upon as part of part of a disease process.  The opposite of lytic lesion.

Calculus: Tartar; a deposit of calcified dental plaque on the surface of teeth.  The calculus found on the teeth of the archaeological skeleton can contain a wealth of information on the diet and extramasticatory activities of the individual.

Callus:  The hard tissue which is formed in the osteogenic (bone cell producing) layer of the periosteum as a fracture repair tissue.  This tissue is normally replaced by woven bone, which is in turn replaced by lamellar (or mature) bone as the bone continues to remodel during the healing process.

Caries:  Caries are ‘a disease characterized by the ‘progressive decalcification of enamel or dentine; the hole or cavity left by such decay’ (White & Folkens 2005: 420).  The extensive caries present on the 2nd right mandibular molar of Sk344 nearly obliterates the occlusal (chewing) surface of the tooth.

Compound Fracture:  A fracture in which the broken ends of the bone perforate the skin.  A compound fracture can be more damaging psychologically to the individual, due to the sight of the fracture itself and soft tissue damage to the skin and muscle.  Compound fractures also lead to an increased risk of fat embolism (or clots) entering the circulatory system via marrow leakage, which can be potentially fatal.

Dysplasia:  The abnormal development of bone tissue.  The bone lesions of fibrous dysplasia display as opaque and translucent patches compared to normal healthy bone on X-ray radiographic images.

Eburnation: Presents as polished bone on surface joints where subchondral bone has been exposed and worn.  Osteoarthritis often presents at the hip and knee joints where eburnation is present on the proximal femoral head and distal femoral condyle surfaces, alongside the adjacent tibia and iliac joint surfaces.

Hyperostosis:  An abnormal growth of the bone tissue.  Paget’s disease of bone is partly characterized by the hyperostosis of the cranial plates, with particularly dense parietal and frontal bones.

Hyperplasia:  An excessive growth of bone, or other, tissues.

Hypertrothy:  An increase in the volume of a tissue or organ.

Hypoplasia:  An insufficient growth of bone or other tissue.  Harris lines are dense transverse lines found in the shafts of long bones, which are indicative of arrested growth periods, as non-specific stress events, in the life of the individual.  Harris lines can often only be identified via X-ray radiography or through visual inspection of internal bone structure.

Lytic Lesion:  Destructive bone lesion as part of a disease process.  The opposite of a blastic lesion.  Syphilitic lytic bone lesions often pit and scar the frontal, parietal and associated facial bones of the skull.

Osteoarthritis:  Osteoarthritis is the most common form of arthritis, which is characterized by the destruction of the articular cartilage in a joint.  This often leads to eburnation on the bone surface.  Bony lipping and spur formation often also occur adjacent to the joint.  This is also commonly called Degenerative Joint Disease (DJD) (White & Folkens 2005: 424).

Osteophytes:  Typically small abnormal outgrowths of bone which are found at the articular surface of the bone as a feature of osteoarthritis.  Extensive osteophytic lipping was noted on the anterior portion of the vertebrae bodies of T2-L3 which, along with the evidence of eburnation, bony lipping and spurs presenting bilaterally on the femora and tibiae, present as evidence of osteoarthritis in SK469.

Pathognomonic:  A pathological feature that is characteristic for a particular disease as it is a marked intensification for a diagnostic sign or symptom.  A sequestrum (a piece of dead bone that has become separated from normal, or healthy, bone during necrosis) is normally considered a pathgonomic sign of osteomyelitis. 

Pathological Fracture:  A bone fracture that occurs due to the result of bones already being weakened by other pathological or metabolic conditions, such as osteoporosis (White & Folkens 2005: 424).

Palaeopathology:  The study of ancient disease and trauma processes in human skeletal (or mummified) remains from archaeological sites.  Includes the diagnosis of disease, where possible.  A palaeopathological analysis of the skeletal remains of individuals from the archaeological record is an important aspect of recording and contextualising health in the past.

Periodontitis:  Inflammation around the tissues of a tooth, which can involve the hard tissues of the mandibular and maxilla bone or the soft tissues themselves.  Extensive evidence of periodontitis on both the mandible and maxilla suggests a high level of chronic infection.

Periostitis: The inflammation of the periosteum which is caused by either trauma or infection, this can be either acute or chronic.  The anterior proximal third of the right tibia displayed extensive periostitis suggesting an a persistent, or long term, incidence of infection.

Radiograph:  Image produced on photographic film when exposed to x-rays passing through an object (White & Folkens 2005: 425).  The radiographic image of the femora produced evidence of Harris lines which were not visible on the visual inspection of the bones.

3) a. – Anatomical Planes of Reference

Anatomical Position (Standard):  This is defined as ‘standing with the feet together and pointing forward, looking forward, with none of the leg bones crossed from a viewer’s perspective and palms facing forward’ (White & Folkens 2005: 426).  The standard anatomical position is used when referring to the planes of reference, and for orientation and laying out of the skeletal remains of an individual for osteological examination, inventory, and/or analysis.

Coronal (frontal/Median):  The coronal plane is a vertical plane that divides the body into an equal forward and backward (or anterior and posterior) section.  The coronal plane is used along with the sagittal and transverse planes in order to describe the location of the body parts in relation to one another.

Frankfurt Horizontal:  A plane used to systematically view the skull which is defined by three osteometric points:  the right and left porion points (near the ear canal, or exterior auditory meatus) and left orbitale.

Oblique Plane:  A plane that is not parallel to the coronal, sagittal or transverse planes.  The fracture to the mid shaft of the left tibia and fibula was not a transverse or spiral break, it is an oblique fracture as evidenced by the angle of the break. 

Sagittal:  A vertical plane that divides the body into symmetrical right and left halves.

Transverse:  Situated or extending across a horizontal plane.  A transverse fracture was noted on the midshaft of the right femur.  The fracture was indicative of a great force having caused it, likely in a traumatic incident.

3) b. – Anatomical Directional Terminology

Superior:  Superior refers towards the head end of the human body, with the most superior point of the human body the parietal bone at the sagittal suture (White & Folkens 2005: 68).

Inferior:  Inferior refers towards the foot, or the heel, which is the calcaneus bone.  Generally this is towards the ground.  The tibia is inferior to the femur.

Anterior:  Towards the front of the body.  The sternum is anterior to the vertebral column.

Posterior:  Towards the back of the body.  The occipital bone is posterior to the frontal bone of the cranium.

Proximal:  Near the axial skeletonThe term is normally used for the limb bones, where for instance the proximal end of the femur is towards the os coxa.

Medial:  Towards the midline of the body.  The right side of the tongue is medial to the right side of the mandible.

Lateral:  The opposite of medial, away from the midline of the body.  In the standard anatomical position the left radius is lateral to the left ulna.

Distal:  furthest away from the axial skeleton; away from the body.  The distal aspect of the humerus articulates with the proximal head of the radius and the trochlear notch of the ulna.

Internal:  Inside.  The internal surface of the frontal bone has the frontal crest, which is located in the sagittal plane.

External: Outside.  The cranial vault is the external surface of the brain.

Endocranial:  The inner surface of the cranial vault.  The brain fills the endocranial cavity where it sits within a sack.

Ectocranial:  The outer surface of the cranial vault.  The frontal bosses (or eminences) are located on the ectocranial surface of the frontal bone.

Superficial:  Close to the surface of the body, i.e. towards the skin.  The bones of the cranium are superficial to the brain.

Deep:  Opposite of superficial, i.e. deep inside the body and far from the surface.  The lungs are deep to the ribs, but the heart is deep to the lungs.

Palmar:  Palm side of the hand.  The palm side of the hand is where the fingers bear fingerprints.

Plantar:  The plantar side of the foot is the sole.  The plantar side of the foot is in contact with the ground during normal ambulation.

Dorsal:  Either the top of the foot or the back of the hand.  The ‘dorsal surface often bears hair whilst the palmar or plantar surfaces do not’ (White & Folkens 2005: 69).

3) c. – Anatomical Movement Terminology

Abduction:  Abduction is a laterally directed movement in the coronal plane away from the sagittal, or median, plane.  It is the opposite of adduction.  Standing straight, with the palm of the left hand anterior, raise the left arm sideways until it is horizontal with the shoulder: this is the action of abducting the left arm.

Adduction:  Adduction is the medially directed movement in the coronal plane towards the sagittal, or median, plane.  It is the opposite of abductionStanding straight, with the palm of the right hand anterior, and the right arm raised sideways until it is horizontal with the shoulder, move the arm down towards the body.  This is adduction.

Circumduction:  Circumduction is a ‘circular movement created by the sequential combination of abduction, flexion, adduction, and extension’ (Schwartz 2007: 373).  The guitarist who performs the action of windmilling during playing is circumducting their plectrum holding limb.

Extension:  Extension is a movement in the sagittal plane around a transverse axis that separates two structures.  It is the opposite of flexionThe extension of the forearm involves movement at the elbow joint.

Flexion:  A bending movement in the saggital plane and around a transverse axis that draws two structures toward each other (Schwartz 2007: 374).  It is the opposite of extensionThe flexion of the forearm involves movement at the elbow joint.

Lateral Rotation:  The movement of a structure around its longitudinal axis which causes the anterior surface to face laterally.  It is the opposite of medial rotation.

Medial Rotation:  The movement of a structure around its longitudinal axis that causes the anterior surface to face medially.  It is the opposite of lateral rotation (Schwartz 2007: 376).

Opposition: The movement of the ‘thumb across the palm such that its “pad” contracts the “pad” of another digit; this movement involves abduction with flexion and medial rotation’ (Schwartz 2007: 377).

4) a. – Postmortem Skeletal Change

Antemortem:  Before the time of death.  The evidence for the active bone healing on both the distal radius and ulna diaphyses, with a clean fracture indicating use of a bladed instrumented, suggests that amputation of the right hand occurred antemortem. 

Bioturbation:  The reworking of soils and associated sediments by non-human agents, such as plants and animals.  Bioturbation can lead to the displacement of archaeological artefacts and structural features and displace deposited human skeletal bone.  Evidence of bioturbation in the cemetery was noted, as irregular tunnels were located across a number of different grave contexts suggesting the action of a burrowing or nesting mammal.  This led to the disarticulation of skeletal material within the grave contexts themselves which, on first investigation, may have led to an incorrect analysis of the sequence of events following the primary deposition of the body within the grave.

Commingled:  An assemblage of bone containing the remains of multiple individuals, which are often incomplete and heavily fragmented.  The commingled mass grave found at the Neolithic site of Talheim, in modern southern Germany, suggest that, along with the noted traumatic injuries prevalent on the individuals analysed, rapid and careless burial in a so-called ‘death pit’ took place by the individuals who carried out the massacre.  The site is a famous Linearbandkeramik (LBK) location which dates to around 5000 BC, or the Early European Neolithic.  Similar period mass burials include those at Herxheim, also in Germany, and Schletz-Asparn in nearby Austria.

Diagenesis:  The chemical, physical, and biological changes undergone by a bone through time.  This is a particularly important area of study as the conservation of bones must deal with bacteria and fungal infection of conserved bone if the skeletal material is to be preserved properly.  Analysis of the diagenesis of skeletal material can also inform the bioarchaeologist of the peri and postmortem burial conditions of the individual by comparing the environmental contexts that the bone had been introduced to.

Perimortem: At, or around, the time of death.  The decapitation of SK246 occurred perimortem as evidenced by the sharp bladed unhealed trauma to the associated body,  pedicles, lamina and spinal arches of the C3 and C4 vertebrae.

Postmortem: Refers to the period after the death of the individual.  It is likely that the body had been moved postmortem as indicated by position of the body in the bedroom and by the extensive markers on the skin, suggesting physical manipulation and accidental contusions.  Further to this the pooling of the blood within the first few hours postmortem was not indicative of where the body was located at the time of discovery.

Postmortem Modification:  Modifications, or alterations, that occur to the skeletal remains after the death of the individual.  No postmortem modification of the skeletal elements of SK543 was noted, however extensive evidence of bioturbation in the form of root action was noted on across the majority (> 80%) of the surface of the surviving skeletal elements recovered.

Taphonomy:  The study of processes that can affect the skeletal remains between the death of the individual and the curation, or analysis, of the individual.  There are a variety of natural and non-natural taphonomic processes that must be considered in the analysing of human skeletal material from archaeological, modern and forensic contexts.  This can include natural disturbances, such as bioturbation, or non-natural, such as purposeful secondary internment of the body or skeletal remains.

Note on the Terminology Used & Feedback

The terminology used above, and their definitions, are taken in part from the below sources.  Direct quotations are referenced to the source and page.  They, the sources in the bibliography, are a small handful of some of the exceptional books available which help to introduce the human skeletal system and the importance of being able to identify, study and analyse the bones in a scientific manner.  The human skeletal glossary present here is subject to revision, amendments and updates, so please do check back to see what has been included.  Finally, I heartily advise readers to leave a comment if revisions, or clarifications, are needed on any of the terms or definitions used in the glossary.

Bibliography & Further Reading

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore, I., Willan, P. L. T., Bentley, A. L., Davies, J. T. & Hargreaves, J. L. 2008. Human Anatomy: Colour Atlas and Texbook (5th Edition). London: Mosby Elsevier.

Jurmain, R., Kilgrore, L. & Trevathan, W. 2011. Essentials of Physical Anthropology. Belmont: Wadsworth.

Larsen, C. S. 1997. Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.

Lewis, M. E. 2007. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease (3rd Edition). Stroud: The History Press.

Schwartz, J. H. 2007. Skeleton Keys: An Introduction Human Skeletal Morphology, Development, and Analysis (2nd Edition). New York: Oxford University Press.

White, T. D. & Folkens, P. A. 2005. The Human Bone Manual. London: Elsevier Academic Press.

The Trials and Tribulations of Homo floresiensis: A Quick Introduction

1 Sep

I haven’t wrote about palaeoanthropology much recently, but I have been meaning to write about Homo floresiensis for a while now.  The diminutive hominin, most likely a new Homo species although this is still debated, was discovered by chance on the Indonesian island of Flores in 2003 during the excavation of the Liang Bua cave site, which was led by the now sadly deceased New Zealand archaeologist Mike Morwood (Brown et al. 2004).  The team that excavated at Liang Bua cave found the remains for a probable 12 separate H. floresiensis individuals dating from around 95,000 years ago to around 13,000 years ago (1), making H. floresiensis one of the last hominin species to live in conjunction with our species, H. sapiens (Brown et al. 2004: 1055).  One of the most complete individuals found at the site is LB1, an adult female aged around 30 who has almost both lower limbs, upper right arm, pelvis and cranium surviving (see image below).  It is this individual that has become the holotype, or type species, for H. floresiensis and on who most of the current research has, and continues, to focuses on (Brown et al. 2004, Brown 2012, Falk et al. 2005, Henneburg et al. 2014).

The majority of this research has been focused on the skeletal remains themselves and archaeological context as attempts to extract ancient DNA (aDNA) from the remains has not been successful, likely due to the cave environment that the skeletons were excavated from and the fragmentary nature of the surviving aDNA.  Morwood’s team formally announced the details of the skeletal remains in 2004 and stated that the remains included primitive and derived features resulting from long term isolation and endemic dwarfing (Brown et al. 2004: 1055-56).  It is important to note here that up until the excavation of H. floresiensis in 2003 it was thought that only H. erectus and H. sapiens were the only Homo hominins present in Late Pleistocene Asia (Brown et al. 2004: 1056).  Later hominin finds, such as at the Denisova Cave excavations in Siberia in 2010 and the announcement of the Denisovan species, have highlighted that other unknown hominins were present in Late Pleistocene Asian contexts helping to fundamental change, and challenge, the way that we think of the evolution of our species H. sapiens (Reich et al. 2010: 1053).

LB1

The species holotype is LB1, found in 2003 in the Liang Bua cave site on Flores, Indonesia. The adult female individual dates to 18,000 years old, stood 3.5 ft tall and represents one of the most complete H. floresiensis individuals found. Notice the large dentition relative to the overall cranium size. Image is not to scale. Image credit: Jennifer Clark (Human Origins Program) and Chip Clark (Smithsonian Institution).

There are many issues surrounding the remains of the H. floresiensis hominins that serve to obstruct and help obfuscate the research that has taken place into understanding the origin and anatomy of the floresiensis hominin.  Inevitability this is ongoing as McVie (2014) highlights in a recent Guardian newspaper article.  Thus it is pertinent to highlight them here to help understand where we are at with understanding the remains of the Flores hominin.  Indeed the H. floresiensis case has all the unfortunate tropes of a spectacular palaeoanthropological find (2) (the unexpectedness of the finds, the bickering academics, mishandling of remains etc.) and continues to show no sign of abating.

As is indicative above, H. floresiensis is a unique and interesting recent hominin ancestor, even more so as the only physical remains of the species are the 12 individuals found and excavated at the Liang Bua cave site in Indonesia.  It is the opposite to our modern notion of the (much maligned) Neandertal, being gracile, petite and small in statue and body.  Perhaps inevitably it was labelled a ‘hobbit’ species (although this word has led to problems with the Tolkein estate).  The type specimen LB1 was quickly repudiated as a H. sapiens individual with a pathology by several researchers and others who have, at various times, stated that all the H. floresiensis individuals, and in particular LB1 and partial skeleton LB6, display attributes varying from myxoedematous endemic cretinism (Oxnard et al. 2010, Brown 2012), Laron Syndrome (Falk et al. 2009, see Hawks 2007), or Down Syndrome (Benton 2014, Henneburg et al. 2014).  There have also comparisons even being made of the singularity of the Late Pleistocene epoch species being compared to the K/T impact boundary event 65 million years ago (Eckhardt et al. 2014), which frankly is a little mystifying.

McVie (2014) has highlighted a potential conflict of interest with regards to both the Eckhardt et al. (2014) and Henneburg et al. (2014) publications, as there is a suggestion that Henneburg (who helped author both articles) picked his reviewers to help favour his research team’s hypothesis and investigation.  The journal that both of the articles were recently published in, Proceedings of the National Academy of Sciences of the United States of America (or PNAS), does not operate a peer review policy in the recognised sense, as most of the other respected journals use, but uses its own specific and trusted system (see here).  Perhaps most surprising is the fact that this team have now published 3 separate papers each focusing on different pathological conditions each time in their continued belief that the H. floresiensis remains are probable members of H. sapiens and represent pathological processes (Henneburg et al. 2014).

Regardless of the ongoing new-species-or-not debate there must be further investigation of the context of the remains.  As Hawks (2007) highlights it is the exact nature of where H. floresiensis fits in both the evolutionary tree and the archaeological context of Asia that remains to be thoroughly demonstrated.  This can only be determined by further finds with consolidated archaeological contexts over an extensive period of time and, with luck, further specimens of this hopeful new species.  The specimens of this population found on Flores, Indonesia, are both tantalising for the human evolution implications and frustrating for their apparent uniqueness in location and time.  As such the Flores H. floresiensis remains are surely one of the most interesting and divisive points of interest in the palaeoanthropological world today.

Notes

(1). A new analysis of the chosen radiocarbon samples and the stratigraphy of the cave site by Sutikna et al. (2016) has led to a serious revision in the chronology of the Homo floresiensis fossils.  It seems that all fossil evidence of H. floresiensis is older than 60,000 years, which is a major revision and leaves a lot of questions regarding the contextual material culture and faunal remains and their association with the fossil hominins.  John Hawks has covered the implications that this new article by Sutikna et al. has in a detailed and interesting read, check it out here.

(2). An excellent counter example of this is the University of the Witwatersrand and National Geographic funded Rising Star project currently underway in South Africa, where the remains of a spectacular palaeoanthropological site (with the evidence of numerous hominin individuals of some importance) has been well and truly open to researchers and members of the public to take part in and to learn about.  This has included an extensive and on-going social media presence and an open call for researchers to join collaborative workshops to study the remains.

Lean More

  • The Smithsonian Institute has a handy guide in introducing the hominins of human evolution at the Human Origins website and, as a part of this, there is a nice guide to H. floresiensis.
  •  For a full round of the issues involved in the research of H. floresiensis and the LB1 type fossil, I highly recommend reading the Wikipedia entry on the species which covers all pertinent academic articles published.

Bibliography

Benton, A. 2014. Was the “Hobbit” a Human with Downs Syndrome? Probably Not. EvoAnth. Accessed 19/08/14. (Open Access).

Brown, P. 2012. LB1 and LB6 Homo floresiensis are Not Modern Human (Homo sapiens) Cretins. Journal of Human Evolution. 62 (2): 201-224.

Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., Jatmiko, Wayhu Saptomo, E. & Rokus Awe Due. 2004. A New Small-Bodied Hominin from the Late Pleistocene of Flores, IndonesiaNature. 431 (7012): 1055–1061.

Eckhardt, R. B., Henneburg, M., Weller, A. S. & Hsu, K. J. 2014. Rare Events in Earth History Include the LB1 Human Skeleton from Flores, Indonesia, as a Developmental Singularity, not a Unique Taxon. PNAS. 111 (33): 11961-11966. (Open Access).

Falk, D., Hildebot, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., Jatmiko, E. W. S., Brunsden, B. & Prior, F. 2005. The Brain of LB1, Homo floresiensis. Science. 308 (5719): 242-245.

Falk, D., Hildebolt, C., Smith, K., Jungers, W., Larson, S., Morwood, M., Sutikna, T., Jatmiko, E. W. S. & Prior, S. 2009. The Type Specimen (LB1) of Homo floresiensis Did Hot Have Laron Syndrome. American Journal of Physical Anthropology. 140 (1): 52-63.

Hawks, J. 2007. Another Diagnosis for a Hobbit. John Hawk’s Weblog. Accessed 24/08/14. (Open Access).

Henneberg, M., Eckhardt, R. B., Chavanaves, S. & Hsu, K. J. 2014. Evolved Developmental Homeostasis Disturbed in LB1 from Flores, Indonesia, Denotes Down Syndrome and Not Diagnostic Traits of the Invalid Species Homo floresiensis. PNAS. Early View: 1-6. (Open Access).

McKie, R. 2014. Homo floresiensis: Scientists Clash Over Claims ‘Hobbit Man’ was Modern Human with Downs Syndrome. The Guardian. Accessed 19/08/14.

Oxnard, C., Obendorf, P. J. & Kefford, B. J. 2010. Post-Cranial Skeletons of Hypothyroid Cretins Show a Similar Anatomical Mosaic as Homo floresiensis. PLoS ONE. 5 (9): 1-11. (Open Access).

Reich, D., Green, R. E., Kircher, M., Krause, J. Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W. & Stenzel, U. et al. 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature. 468 (7327): 1053–1060. (Open Access).

Sutikna, T., Tocheri, M. W., Morwood, M. J., Saptomo, E. W., Awe, R. D., Wasisto, S. … & Storey, M. 2016. Revised Stratigraphy and Chronology for Homo floresiensis at Liang Bua in Indonesia. Nature. In Press. doi:10.1038/nature17179.

Archaeology Day 2014: A View From Friends

11 Jul

Friday the 11th of July marks Archaeology Day 2014, a tremendous initiative designed to showcase the diversity of research and work that is found in the archaeological sector and industry across the world.  But rather than have this blog entry focus on me specifically, I wanted to present the view of a few of my friends that are involved in the archaeology community worldwide, whether they are a volunteer, a student or an academic, be they in it for the fun or employed in the commercial sector.  So without further ado here are a few of my friends and what they will be up to on the Day of Archaeology 2014!

So firstly we meet up with my friend Jennifer in Belgium, who has some skeletons that need examining:

“I am a graduate in Prehistoric archaeology, and in funerary archaeology and human osteology.  On archaeology day I will be conducting an osteological study on a skeletal collection.  Firstly there is a need to assess the completeness of the bones that were excavated in the Belgian town of Rebecq.  This excavation by the SPW (Public Service of Wallonia) is one of the fieldworks I took part as a volunteer in 2012.  The cemetery is early medieval, and the individuals seem to show a lot of pathological lesions.  The sex and age at death of the individuals is estimated based on metrical and morphological features expressed in the remains.  Understanding the health conditions and the demographic profile of the people buried in this cemetery will help understand how they lived in Rebecq in the Middle Ages.
jennifergonnisenreb

Jennifer Gonissen excavating an early medieval cemetery at Rebecq in Belgium. Photo credit D. Bosquet-SPW.

Besides that, I have also been helping at the lab for the Palaeoanthropology course led at the University of Brussels this academic semester.  I am also working on publishing my two master thesis.  Everything is done on a volunteering basis as there are very few paid opportunity for osteoarchaeologists in Belgium.  This does not mean that there is nothing to work on, as Belgium is rich in skeletal material excavated in numerous fieldworks across the country, a large part of which still has to be properly studied.”

– Jennifer Gonissen, an osteoarchaeologist based in Brussels.

Keeping with the skeletal theme we now turn towards Cheshire, England, where we find Alison helping archaeological students:

“While I often spend a lot of time at a desk for archaeology, this summer I am back in the field: from June to September at the Poulton Research Project field school in Cheshire. As there is a cemetery on site it is my role to oversee any excavation involving human remains. In addition to this, I also to teach students (from all subject backgrounds and levels of experience) how to identify, excavate, record, lift, and clean skeletal material.

alison poulton

Students record a burial on site, before the skeleton is lifted. Photo credit Alison Atkin, with permission.

While it’s my job, I consider it a privilege to be involved in their introduction to osteoarchaeology – and thus far I’ve been nothing less than impressed with their enthusiasm for and insights into the subject.”

– Alison Atkin, a Doctoral Researcher at University of Sheffield, osteoarchaeologist at the Poulton Research Project and blogger at Deathsplanation.

After which we join David in Haddington, Scotland, as he balances his community and commercial archaeological work:

Currently the world of my archaeology revolves around 5 major suns, all equally bright and demanding.  The Skills passport is printed and being packed, with the final text added to the website,  BAJR is campaigning for more than minima, the preparations for fieldschools and training with Rampart Scotland are at warp factor 7 (days to go)  and of course Past Horizons articles never end.   Finally, and slipped into the mix is my commercial sun, three reports to be completed, two tenders to submit and a rather complex negotiation to tiptoe through.   Also helping to organise a medieval conference in Haddington in September and a new social enterprise archaeology group.   So all in all a fairly busy, but exciting time!”

– David Connolly, owner of BAJR, co-writer at Past Horizons and creator of the Archaeology Skills  Passport.

davidconnolly

David Connolly horsing about on an archaeology project – business as usual!

What is it like to work in the field as an archaeologist and what can it involve?  Kevin provides a breakdown of what he gets up to in the fields and offices of England:

“I am currently working with Wardell Armstrong Archaeology, as a casual field archaeologist out of their Carlisle office.  They have me doing a little bit of everything in terms of work, though mostly within the early stages of pre-planning on sites due for development, including surveys (mostly geophysics) and evaluations.

Unfortunately I have been told I am not allowed to divulge detailed information on current projects for obvious reasons, but I can talk about the projects I’ve been involved with recently that have been made public.  For example, I helped throughout most of the post-ex for the predominantly Roman site at Blackfriars, in Leicester; washing all the finds as they came back, helping to catalogue them, writing small-finds sheets etc., which was great because there were some very interesting finds.  Pretty much everything you would expect from a domestic, urban Roman site, complete with coins, copper brooches, various other types of jewellery, iron tools, hoards of pottery and colourful painted wall plaster.  There was even a couple of roof tiles baked with animal paw prints still in them, which were interesting, giving a very intimate snapshot of Roman life.

kevinhor

Kevin building a snapshot of every day life by processing the archaeological artefacts.  Notice the regulatory Richard the III mug that can be found in every archaeologists office (click to enlarge!).

However, my primary role these days is with the geophysics team, travelling all over the country, Essex, Wiltshire, Staffordshire, Cumbria, Kent, Lancashire and on Archaeology Day I will theoretically be on the outskirts of Newcastle-upon-Tyne.  Nice and close to home.  As I said, I can’t go into details about the job other than it is in advance of a housing development.  Doing the geophysics itself is hard work.  I am not going to lie! We shall be walking, I’ve been told, through knee-high sugar-beet, which will make walking with the twin-probed magnetometers awkward at best.

I think I’ve done geophysics through every type of crop and across every type of terrain (and through every weather condition!).  Sometimes it’s quite enjoyable, other times, like I say, it’s bloody hard.  No doubt I will need to buy a new pair of wellies by the end of the second day.  That’s right, we wear wellies!!! Our company won’t supply non-metallic shoes, so we’re all wearing rubber wellies which are uncomfortable to walk in over long distances and very hot and sweaty in the summer heat! Fun fun!  I suppose the odd aspect to my doing geophysics is that I’m not a geophysicist, and I certainly have no formal training in geophysics.  I’m very much an archaeologist who has been pulled in to do the surveying work, learning on the job!”

– Kevin Horsley, a commercial field archaeologist with his hands and feet dipped into all the pots archaeology has to offer.

My undergraduate university friend Emily also enjoys the variety that life in archaeology has to offer:

“If I am not in the field digging evaluations or excavations with my team, I am in the office processing finds and preparing archaeological archives for museum accessioning.  This weekend I’ll be celebrating the Festival of Archaeology by heading down to the nearby Milton Keynes Central Library to talk to the public about archaeology and local finds! 

Emilycotswoldarch

Emily and company at Cotswold Archaeology processing and recording archaeological data, ready to archive and store material. Photo credit: Cotswold Archaeology.

I really enjoy both the fieldwork and post-excavation elements of my job, it is nice to have the variety and I feel one improves the other as it gives me a better understanding of the different aspects of commercial archaeology.”

– Emily Evans, field archaeologist for Cotswold Archaeology.

Is field work all there is to archaeology or can you get involved in other ways as well?  Robert provides a different view:

I was forced to leave the archaeological profession in 2011, mostly owing to the difficulties of providing for my family on ever diminishing wages, and the requirement to erode standards to the level that there was no longer a point in doing the job. Three years later I’m still in archaeology, but not in the way I ever expected. Today my ‘day of archaeology’ will involve leaving the house early and going to work in IT. Once I’m home in the evening and the kids are fed, washed, and put to bed do I generally get a chance to sneak off to my study and write.

robertchappleworkinng

Robert Chapple hard at work writing about archaeology.  Read more about Robert, his desk and others (including mine) here!

These days the main drive of my archaeological writing is for my blog, the uninspiringly named ‘Robert M Chapple, Archaeologist’. I write about archaeological and heritage stuff that interests me, from days out with my family at ancient sites, to campaigning on a variety of heritage issues. However, the stuff that brings me the most pleasure right now are various accounts of lectures, conferences, and symposia – either written by myself or fellow conspirators – that I help to bring different aspects of archaeological research to a wide audience. It’s not what I ever imagined I’d be doing, but I’m still here and I’m still enjoying being able to contribute to the field.”

– Robert M. Chapple, whose work and blog can be found at Robert M Chapple, Archaeologist.

Ancient Egypt entices a lot of children and teenagers into studying archaeology but what is it really like?  Loretta presents us with a snapshot of where her research is at:

“I am due to start my PhD on ancient Egyptian and Sudanese ceramics this autumn at the university of Oxford; specifically looking at pilgrim flasks from the New Kingdom to the Roman period. This year, I have been working as an independent researcher and consultant, and a book I have consulted on, ‘Discover More: Ancient Egypt‘ has recently been published. This summer I am busy working on a project analysing infant jar burials, which I am developing into a paper.”

– Loretta Kilroe, an Egyptologist specializing in pottery who is based at the University of Oxford.

lorettakilroeblog

Loretta working on documenting Egyptian pottery from a recent project with the British Museum in Sudan.

Heading over to Australia now, we have my good friend Lorna explaining a bit about her research and why it’s important:

“My PhD thesis, Towards a Bioarchaeology of Care: A contextualised approach for identifying and interpreting health-related care provision in prehistory, was finalised last year – I’ve included the whole of this cumbersome title because it’s a reasonable summary of my research focus.  Over the next twelve months I’ll be putting my efforts into improving and extending the bioarchaeology of care approach.  This will include refining the Index of Care – a freely available application, launched earlier this year, designed to support the four-stage bioarchaeology of care methodology (user feedback is enthusiastically solicited!); editing my thesis for publication (look out for Theory and Practice in the Bioarchaeology of Care in 2015); and helping to organise a special session – ‘Building a Bioarchaeology of Care’ – to be held at the Society of American Archaeology 2015 meeting in San Francisco (and at which David Mennear, the creator of this blog, will be speaking). 

1   Man Bac Burial 9 in situ

The first case study to apply a ‘bioarchaeology of care’ methodology focused on Man Bac Burial 9, a young man from Neolithic Vietnam who lived with quadriplegia for around a decade (see more here).

As time permits, I’ll also be trialing the Index of Care on new cases of past health-related caregiving; I hope to explore the experience of individuals from historic as well as prehistoric contexts, which will give me the chance to look at how information from archaeology conforms to information on care practice from available texts.” 

– Lorna Tilley, a visitor in the School of Archaeology and Anthropology at Australia National University.

From Australia we jump back to Belgium and Héloïse, who introduces us to her research interest in Benin pottery:

My name is Héloïse Meziani, I graduated from a Master’s degree in Pre-Columbian Art and Archaeology at the Université Libre de Bruxelles, Belgium, in 2012; and continued on with a Master’s degree at the University of East Anglia, Norwich, in The Arts of Africa, Oceania and The Americas. I decided to enroll in this second MA to wider my opportunities in the “world art and archaeology” field. However, after this successful year in England, I came back to Belgium to unpaid internships as only opportunities. Jobs in our field are few and funded PhD hard to obtain.

On Archaeology Day, I will be continuing my volunteer internship at the Royal Museum for Central Africa of Tervuren, Belgium. I am currently studying pottery sherds brought back in February 2014 from the archaeological habitat site of Kantoro, northern Benin, by the Crossroads of Empire project team. My work consists in the systematic study of 2 Surveys; one of 283 sherds, another of 859 sherds. After inventorying, reassembling and imputing all of those shards in a database (by shape and decor), I am in the process of photographing and studying the diagnostic material to understand its use and its variation through time. We can already see a dichotomy between two types of ceramics: thick and large ones decorated using folded strip roulette or by cord, probably made for storage, and a finer, more polished ceramic, decorated with thinner tools, possibly used for serving food.

heloise

Examples of pottery sherds from the above mentioned project. Pottery sherd survey II, 40-50cm, and second pottery sherd survey II, 80-90cm. Photo credit Héloïse Meziani.

My interests are in African pottery and beads (my UEA’s master’s dissertation was on a collection of archaeological beads from northern Benin), but also in Mochica’s ceramics (Peru). In the future, I am hoping to find a job (research or museum work) in link with one of those fields of studies.

– Héloïse Meziani, an archaeologist.

And from Belgium we jump to Germany, where we find Anna carrying out all sorts of duties for her archaeological company:

Currently I’m working for an archaeological company in Cologne (Archbau Köln) being the handy man – so that means I’m mainly working in the office finishing projects that mainly involve counting sherds of pottery, organising excavations but also being on site. Besides all of this, I am also the main anthropologist of my company – so whenever we dig up some skeletons I’m responsible for their examination.  So basically, I’m always quite busy archaeology wise.”

– Anna Marschner, an osteoarchaeologist.
.
Next we find Adam talking about the often unsuspecting and adventurous pathways that archaeology can take you on:
.
I finished my M.A. at Sheffield in 2012 and moved to London in April 2013. I was a bit upset that I was not doing anything with my degree so I looked for work, which I found, at the Palestine Exploration Fund. Through a connection there I ended up going on a two and a half month excavation in Sudan of a medieval Nile River fort. It was an amazing site but the living was very rough but that is half the fun of it!
adamfraser

Adam Fraser relaxes in Sudan after excavating in the heat, and considers relaxing in London before taking part in some Oman archaeological exploits.

While I was in Sudan one of the team members received an email from a friend back in the UK. The email was about potential work in Oman. Nobody on our team was able to accept the invitation so I did. After finishing in Sudan I was in London for a few weeks indulging in the various vices that one misses while on excavation. Before I could settle down I was on another flight to Muscat. Upon arrival I was informed of the enormous task before our small team. We had to excavate and document a very large tract of land which was being developed for a highway. Scattered through the designated landscape were many Bronze-Iron Age tombs. We ended up with a few skeletons to show for it and a good collection of beads and some other jewellery. I did not expect that things would turn out this was when I was looking for work a year ago.

– Adam Fraser, a field archaeologist and a librarian at the Palestine Exploration Fund.

From Adam to Alex, who explains what it can be like to direct an archaeology company:

“As archaeology director for Elmet Archaeological Services Ltd I have a many varied role and I can be seen with many different hats on. This 2014 Archaeology Day finds me editing a report from a site that we worked on last year, whilst trying to get to grips with the vagaries of ArcMap; the commonly used GIS program for mapping sites.

alexelmetarch

Alex in full recruitment mode for a community archaeolgy project looking at the evidence for WWII prisoner of war camps at Hickleton Hall.

I shall also be getting ready for our yearly excavations at Hickleton Hall in Doncaster, beginning in two weeks!”

– Alex Sotheran, director at Elmet Archaeolgical Services Ltd.

 And finally we have Spencer who’s often busy staring at rocks, looking for clues to our past:

I’m an archaeological lithics specialist with a particular passion for the Mesolithic period in north-east England. Somebody has to be! This period, between the last glaciation and the onset of the Neolithic revolution, is a boiling pot of potential in our region – tantalising glimpses of transitions, human reactions to major climate events and natural disasters like tsunamis.

Pic_office_hand

Spencer Carter hard at work threading the ties of humanity via the lithic analysis of Mesolithic flints from the north of England.

On the Day of Archaeology I will be in the lithics lab in north-west London. The door is always open during the day because people drift in and out wondering what on earth I’m doing with tiny bits of stone in their thousands. I tell them the story because archaeology is about a narrative, about our shared past and lineage. Having been burgled twice, the door is double-bolted each evening (nothing was taken). I’m continuing the detailed cataloguing and photography and awaiting, chewing on fingernails, the final set of radiocarbon dates for an exciting excavated Mesolithic ‘persistent place’ on the North York Moors.

On top of that, I’m helping to organise a CSI Teesside forensics event for the Festival of Archaeology and, as editor for Council for British Archaeology Yorkshire, calling for papers for our annual FORUM YORKSHIRE journal.”

– Spencer Carter, who blogs at Microburin, is a member of the Lithoscapes team and the Teeside Archaeology Society chairman.

So there you have it!  A short selection of what some of my friends involved in the beautiful, but sometimes frustrating, world of archaeology are up to on the Day of Archaeology 2014.  

The question now is what are you going to be doing?  Let me know in the comments below! 

Brief Updates: Archaeological Desks & Palaeoanthropology

17 May

The archaeologist Robert M Chapple has recently done something a bit special to celebrate his 100th post over at his blog.  In a thoughtful and entertaining entry Robert discusses the writing and thinking space of the humble desk, that much maligned friend of the archaeologist.  Indeed when a person thinks of an archaeologist the first thing that pops into a person’s head is the excitement of fieldwork in far-flung countries, a trowel perhaps, maybe some bones or Indiana Jones cracking his whip.  It is rarely the vital tool that is the desk, a space in which to hunker down, study site reports, books and process the archaeological record properly over a hot cup of tea, that pops into the minds of people asked to think about archaeology.

Yet the desk is where the action happens!  This is where the hard work of the amalgamation of knowledge happens, where the fieldwork is fleshed with the existing archive and the site is put within a larger context.  Interpretations are made and broken on the humble desk.  So Robert, recognising this vital space of thought and action, also saw it as a deeply personal space for the individual.  As such he asked a wide variety of his archaeological friends to send their own photographs of their desks for his 100th blog entry.  And it is a lovely entry, displaying both academic desks and personal spaces.  I was also asked to join in and you can see my little bedside table from which I am writing this now!  Although my work area is pretty bare compared to the desks (and fantastic 2 or 3 screen adapted computers) on show here, I got a serious longing for the university library where I carried out the majority of my dissertation research.

In other news I have produced a small article for the Teesside Archaeology Society TEESCAPES magazine.  I was kindly asked to write for them by my good friend Spencer Carter, who is the edited of the magazine and a specialist in studying and understanding the context of prehistoric microlithics.  Spencer is currently researching the Mesolithic period of northern England and his fantastic Microburin site, which documents his research and outreach work, can be found here.  My article, which was published in the 2014 Spring Edition of TEESSCAPES, focuses on the amazing palaeoanthropological highlights of 2013 and specifically mentions the Georgian site of the Homo erectus finds at Dmanisi (1), the Spanish site of Sima de la Huesos, and the Rising Star South African project.  It is an informal look back on year of research and excavations that bought much to the table in terms of our of knowledge of understanding human evolution.  (I may also have sneaked in an Alan Partridge joke).

teesscapes_2014-01_cvr

A great Spring 2014 edition of TEESSCAPES by the Teesside Archaeological Society with articles on a variety of topics including, but not limited to, history and archaeology in the national curriculum, the Mesolithic forests of the coast of NE England, museum reviews, Streethouse before the Saxons and human evolution. There are also field notes and books reviews. Read more about the editor’s views, Spencer Carter, in his enlightening blog on post on publishing and editing archaeology journals and open access in archaeology over at Microburin here.

I’ve tried to frame the article within a basic introduction to palaeoanthropology, some of the major new techniques being used in the study of past populations and some of the problems in trying to understand the fossil record and of human evolution in general.  It is a short article but I have to say I am very impressed by the presentation of the article, so a big thank you Spence!  I hope to start producing articles for TAS as and when I can, but this aside I would urge any reader to check it out and to check out any local archaeology societies or companies near to you.  They really are a wealth of original research and really help you get to grips with what is going on in your region and further abroad.  My own article also includes a cheeky photography of me in a lab coat which is sadly, at the moment, a rare occasion.  If you are an archaeologist, a student archaeologist or someone who just manages to engage in their passion between sleep and work then I heartily recommend jumping in and writing for your local society!

Notes

(1).   The article is a review of the amazing palaeoanthropological finds and research of 2013 and as such is likely to become out of touch with the passing of years, as new research highlights new evidence or different perspectives are investigated, hypothesized and studied in-depth.  A good example of this is the fairly recent claim that the Dmanisi individuals, discussed in my article, could possibly (but unlikely) represent different lineages of hominin species (check out Jamie Kendrick’s site The Human Story for more information on this issue and for in-depth entries on human evolution in general).

Further Information

  • Learn about the Teesside Archaeology Society here.
  • Current and past editions of TEESSCAPES can be found here.
  • Robert M Chapple’s awesome blog can be found and read here.
  • Spencer Carter’s fantastic Microburin site can be read here.

Palaeo Updates: Call for Palaeoanthropologists to Study Rising Star Hominin Remains and Start of John Hawks Human Evolution MOOC

22 Jan

Another quick post here but one that highlights a project that is pretty impressive in its implications for palaeoanthropology.  Also noted here is the start of a MOOC (Massively open online course) on human evolution that may interest the readers of this blog.

The Rising Star Expedition in South Africa has uncovered around 1200 skeletal elements from around 12 individual hominins in the first season of excavation, an unparalleled find in the excavation of palaeoanthropological sites.  Now the project is advertising openly for early career scientists to examine and describe the skeletal remains found in the cave (my favourite quote: “Palaeoheaven has arrived, it’s just solid fossils”).  This is a unique opportunity in the field of paelaeoanthropology.  Typically fossil hominin sites are kept secret with only a lucky few allowed access to prepare, study and describe the fossils once they have been carefully excavated on site and taken to a palaeo laboratory to be looked at in more detail.  This is usually a process that can take years of careful work by a small team.

But the Rising Star Expedition has been different from the very beginning, with key members of the team tweeting and blogging every incredible scene of the South African cave site and openly advertising for participants.  Now the team have advertised for early career scientists to apply for the chance to study the hominin fossils.  As stated on John Hawks blog entry on the advertisement, the Rising Star team want to recruit a large group of scientists to come together for a five-week long workshop in May/June of this year to study the remains and produce the first high quality and high impact research papers on this batch of fossil hominins.

Here is Rising Star director Lee Berger’s open invitation to study the hominin remains gathered from the Rising Star Expedition project in South Africa:

risingstarr2014

The announcement by Lee Berger, professor at the university of the Witwatersrand in South Africa and describer of Australopithecus sediba, found at the Malapa site.

Graduate students who have finished their data collection, and have the support of their supervisors, will also be considered for the opportunity.  As John Hawks states in his blog post the applicant for the workshop should be very clear in stating their experience and the datasets that they can bring to the project, be clear about your own skills, knowledge and value and do not be afraid to apply.  This is a fantastic opportunity to be involved in the study of human evolution, at the very cutting edge of the research.  I wish all the applicants the best of luck and I look forward to the dissemination of the research itself.

In other news today marks the beginning of the 8 week free MOOC course on Human Evolution: Past and Future produced by the aforementioned palaeoanthropologist John Hawks.  The MOOC, provided by Coursera, takes a in-depth look at human evolution detailing not just the complexity of the fossil record but also of the genetic record.  The course includes all the exciting news from the Rising Star Expedition and exciting footage and interviews with palaeoanthropologists at sites from around the world (including the Dmanisi site in Georgia, Malapa in South Africa and others).

I am particularly looking forward to the discussion of human evolution within the past 10,000 years and the stunning advancements made with extracting ancient DNA from fossil hominins.  I joined this course a few months ago when I first mentioned the course on this blog but you can still join up now.  Just remember that the course is split up into weekly topics so you may not want to miss one.  I have so far watched the majority of the interesting and well presented videos for the first week, the focus of which is our place among the primates.  I cannot wait to join in and participate in the course fully, hope to see you there!

Find Out More

Lee Berger Talks About Rising Star Project

11 Dec

Palaoeanthropologist Lee Berger, describer of Australopithecus sediba and professor at the University of the Witwatersrand in Johannesburg, can be heard here describing the recent Rising Star Expedition and the projects rescue of hominin bones from deep inside a cave in South Africa after a chance discovery by some cavers.

The project, with support from the National Geographic and the Speleological Exploration Club of South Africa, have recently recovered around 1200 individual fossil hominin elements during a three week recovery dig at the site.  As Berger discusses in the phenomenally exciting radio interview with National Geographic it his belief that there are articulated hominin remains yet to be uncovered and rescued from the cave site.  It truly promises to be an amazing site due to the massive haul of fossil material found within a concentration no bigger then many dining room tables.  Once the fossils have been analysed scientifically further information will be released, although the project is fairly unique in the fact that it is running as an open science project.  The National Geographic (and others including John Hawks and Lee Berger) has so far done an excellent job in documenting the project (see here).

In perhaps one of the most interesting periods ever for palaeoanthropological news the interview competes with the recent investigation of the five Homo erectus individuals at the Dmanisi site in Georgia and last week’s announcement of the sequencing of mtDNA from a 300,000 year old hominin from the Sima de los Huesos site in Spain (Meyer et al. 2013).  I hope to further explore the 300,000 year old mtDNA article in detail in an upcoming entry.

As ever, I heavily recommend heading over to John Hawks weblog as his posts on the Rising Star Expedition and human evolution continue to enthrall and shed light on the fossils and genetic investigations that he is so often a part of.  We are living in some truly fascinating times where we are really starting to learn about human evolution through the glorious combination of genetic analysis and the smart approaches to extracting ancient DNA, combined with the truly amazing fossil finds of the past decade and a bit.

Bibliography

Meyer, M., Fu, Q, Aximu-Petri, A., Glocke, I., Nickel, B., Arsuaga, J-L., Martínez, I., Gracia, A., Bermúdez de Castro, J .M., Carbonell, E & Pääbo, S. 2013. A Mitochondrial Genome Sequence of a Hominin from Sima de los Huesos. Nature. 505: 403-406.

Killer Whales: A BBC Natural World Documentary

26 Oct

The BBC strand of a wildlife documentary series, entitled Natural World, have a new episode up on the BBC Iplayer focusing on recent scientific research on the globally distributed killer whale (Orcinus orca).  It is available to view here, although readers outside of the UK may have trouble watching it online (If you have any links please leave a comment!).

It was whilst watching the program, and its discussion on whether there are different species of killer whale (likely 3-5, with various sub-species), that it reminded of the Dmanisi Homo erectus fossils (Lordkipanidze et al. 2013) which were subject of the previous post.  Lordkipanidze et al. (2013: 330) postulated that the morphology of the 5 Homo erectus crania present at Dmanisi, Georgia, represent, when examined against comparable material, the evidence for wide morphological differences within and among early Homo, possibly indicating rather less individual species than is currently documented and described.

The Natural World episode highlighted the differences between killer whale ‘cultural’ groups and species with niché but distinct differences in external anatomy (body size, eye and saddle markings, shape and size of dorsal fins), vocalisation and the different hunting methods used when groups targeted varying prey groups.  This is important as it will help to inform on how humans try to conserve killer whale populations around the globe as an understanding of the distinct species could have an important ecological impact on what groups of killer whales are under threat the most.  Of course the big difference between the above comparison was the use of DNA testing and active observational fieldwork, if only we could test the early Homo fossils in such a way!

Further into the program we came across evidence of an individual killer whale who had likely been maimed as a juvenile and who had been adopted, at different times, by no less than 4 different pods of killer whales. There was also footage of said killer whale shadowing and receiving food from one member of her current pod who could successfully hunt (whether this was deliberate is another question).  This reminded me of a nice little paper by Fashing & Nguyen (2011) of the relevance of behaviour towards disabled, injured or dying individuals among animal groups and it’s relevance towards palaeopathology.

Palaeoanthropologists should take into account the wider aspect of how animals treat members of their own species when they are disabled, injured or dying, as Fashing & Nguyen (2011: 129) note that ‘recent evidence from paleoanthropology indicates that inferences into the evolution of human behavior based solely on a chimpanzee model are less informative than previously believed’.  Lordkipanidze et al. (2013), in their study, compare the Dmanisi individuals against modern Homo sapiens and chimpanzees, amongst others, but it could be said that these two groups in particular do not reflect good study comparative groups as their anatomical plasticity is generally quite homogeneous.  As ever, of course, further research is needed and I for one look forward to it.

The program also debated the troubling nature of the capture of killer whales for the purposes of entertainment for large sea life centers across the world, a practice that has now been largely banned in the Western World.  There is a haunting passage in the Natural World episode showing archive footage of the frenzy of killer whale captures during the 60’s and 70’s, with an appropriately sinister (and awesome) Pink Floyd track playing in the background.  Killer whales are, by their nature, large social predators – they need the security of their family pods and the sea environment in which to live and to hunt.

At SeaWorld, in the United States of America, there have been a recorded 100 separate episodes of aggression towards humans from captive killer whales since 1988, and there have been 4 recorded fatalities of trainers involving captive killer whales across the globe.  Let me re-iterate here that killer whales pose little threat to humans in the wild, that there has been no recorded human death by killer whale in the wild but there have been incidents (see list).  Clearly captivity leads to abnormal behaviour amongst these amazing creatures, as it can be said for many animal species (worth a watch is the 2013 documentary Blackfish).

All in all, this was an enlightening program on the advances made in studying the killer whale, highlighting the distinct hunting differences, group structure and vocalisation of an apex predator who has both inspired and caused fear in humanity throughout the ages.  It is well worth watching the episode, if not the series, for insights into the natural world.  Previous episodes worth a watch also deal with the remarkable walrus and the delightful orangutan.

Watch the BBC documentary here (United Kingdom residents only).

Bibliography

Fashing, P. J. & Nguyen. 2011. Behavior Towards the Dying, Diseased, or Disabled Among Animals and its Relevance to Paleopathology. International Journal of Paleopathology. 1 (2-3): 128-129.

Lordkipanidze, D., Ponce de León, M. S., Margvelashvili, A., Rak, Y., Rightmire, G. P., Vekua, A. and Zollikofer, C. P. E. 2013. A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early HomoScience.  342 (6156): 326-331. (Full article here, email if this doesn’t work).

D4500: The 5th Dmanisi Skull

22 Oct

A paper has been by published by Lordkipanidze et al. (2013) in the journal Science which highlights the unique fossil finds at the Dmanisi palaeoanthropological site, in Georgia, of the cranial and post-cranial remains of 5 Homo erectus individuals.  In particular the paper discusses the morphological aspects of the fifth Dmanisi skull, D4500 and associated mandible D2600, as a remarkably well preserved find.  Discovered during field work at Dmanisi in 2005, D4500 and D2600 represents one of the best preserved and complete adult skulls of Early Pleistocene Homo fossils so far discovered and described (Lordkipanidze et al. 2013: 326).

The paper in question debates the morphological variation between the cranial remains of the five Homo erectus individuals at Dmanisi, suggesting that there is greater variation in the Homo genus than is typically given credit for.  The paper compares the five Dmanisi crania and their morphological variations between the individuals to early and later Homo species hominins (including early African Homo species and Homo neaderthalensis), modern Homo sapiens and extant apes (including Pan troglodytes).  The conclusions of the article suggest that there is wide variation within the early Homo palaeodeme of morphological variation, much more than has been noted or given credit for with perhaps too many species being named and described as individual species in the early Homo fossil record.  Lordkipanidze et al (2013:330) argue that the Dmanisi collection could represent evidence of the single lineage hypothesis for early Homo.  Of course this is a contentious issues and further research is needed, but this is exciting nonetheless.

There has been numerous online blog entries debating the article and its implication for the evolution of the Homo genus.  To my mind the articles linked to below perhaps sum up the best reactions and thoughts to the article, although I look forward to further peer-reviewed research being carried out.  Outlining the main issues from the article, and the evolutionary mechanism behind the variations present in the Homo genus, is Weiss’s article over at the The Mermaid’s Tale which is informative and exciting.  He also discusses the background to the one species hypothesis within Homo which Lordkipanidze et al. (2013) imply could be a possibility as a result of their study of D4500.  They also suggest it as a mechanism for phylogenetic continuity across continents for early Homo.  John Hawks presents critical comments on the article and evocatively describes just how well D4500 has survived and how beautiful and complete a specimen the individual actually is.  In particular Hawks offers his own interesting comments on early Homo evolution and the importance of understanding the many facets of evolution that are at work, including the genetic differences and how modern populations of Homo sapiens often provide poor comparative models for ancient Homo species.  At A. P. Van Arsdale’s blog there is a nice breakdown of the article itself, including just why the five crania at Dmanisi are so important and just what their discovery may mean for interpreting the hominin fossil record.

Now to end this brief blog post I think it is only right that I post a picture of the articulated skull of D4500 himself*.  It is a beautifully preserved specimen and one worth taking the time to ponder over.

dmanisi skull 5

The articulated individual known as D4500 (cranium) and D2600 (mandible) exhibiting a small braincase with a large prognathic face, found at the Georgian site of Dmanisi in 2005.  The skull also boasts of one of the best preserved basicranial of any Homo erectus known (Hawks 2013) although the dentition displays that most of the teeth were worn past their crowns. Source: Lordkipanidze et al. (2013: 327).

*It is likely that the individual is a male, but expected a flood of research to take place in the next few years on the Dmanisi individuals and their context within human evolution.

Further Information

  • A full list of scientific publications from the Dmanisi palaeoanthropological site can be found here on the official website (though I am unsure how often the site is updated).  The website has detailed information on the formation and geology of the site, including the hominins and the different species of fauna that have been found, plus you can still get a place to dig at the actual site!
  • Check out The Human Story’s take on a new 2014 article suggesting that there could possibly be two hominin lineages suggested at the Dmanisi site.

Bibliography:

Hawks, J. 2013. The New Skull from Dmanisi. John Hawks Weblog. 18/10/2013.

Lordkipanidze, D., Ponce de León, M. S., Margvelashvili, A., Rak, Y., Rightmire, G. P., Vekua, A. & Zollikofer, C. P. E. 2013. A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo. Science.  342 (6156): 326-331. (Full article here, email if this doesn’t work).

Van Arsdale, A. P. 2013. The New (Wonderfu) Dmanisi Skull. The Pleistocene Scene-  A.P. Van Arsdale Blog. 17/10/2013.

Weiss, K. 2013.  How Many ‘Human’ Species are there? Is it even a Real Question?  Why does Anybody Care?  The Dmanisi SkullsThe Mermaid’s Tale.  21/10/2013.

Anatomically Modern Humans: A Brief Introduction

22 Apr

The imperative of  the human species to ‘Know Thyself‘ has developed into a rapidly expanding field in palaeoanthropology.  The exploration of our species, Homo sapiens, is a particularly active field which utilizes multi-disciplinary approaches to untangle the evolutionary threads of our beginning.  The following essay introduces concepts and approaches used in this field, whilst raising current research issues.

——~…~——

“For a species that is both narcissistic and inquisitive, Homo sapiens has so far done a remarkably poor job of defining itself as a morphological entity”, Tattersall and Schwartz (2008: 49).

Thus starts the opening sentence to Tattersall and Schwartz’s 2008 article on the problems of clarifying the morphological distinctiveness of anatomically modern humans (AMH or the species Homo sapiens).  It is perhaps applicable not just to the morphological characteristics but also the fossil record and origins of AMH themselves (Pearson 2008: 38).  This paper, then, will discuss the principles behind the definitions and evolution of AMH in context with reference to its behaviour and morphological traits.  In turn, the dominant models of the origin and subsequent dispersion of AMH will be discussed, with reference to where Homo sapiens ‘fit’ in the palaeoanthropological record.  A wealth of new genetic research data and fossil finds has considerably opened up the treasure chest of hominin information, which is having a considerable impact on our understanding of the H. sapiens place in the evolutionary records (Bowden et al. 2012, Curnoe et al. 2012, Krause et al. 2010, Prat et al. 2011, Wood 2005: 42).  It is directly as a result of how the reporting of evolutionary science has changed in the past few decades (McEwan 2012), and how technological approaches have uncovered so much genetic data in reconstructing fossil record relationships (Jurmain et al. 2011: 270), that the definition of AMH is not so easy.  This paper will conclude with a talk on how the biocultural evolution of H. sapiens is now impacting both our environment and localised populations in certain contexts (Le Fanu 2009, Hawks et al. 2007, Jurmain et al. 2011).

It is important to note that H. sapiens are the last species of the genus Homo, with the first species tentatively dated in Africa to nearly 2.5 million YA (years ago), which led to the first dispersal of hominins (largely H. erectus) from Africa around 1.8 YA (Jurmain et a.l 2011: 240); AMH dispersal occurred much later.  It was once thought that AMH were defined by modern anatomy and behaviour at the junction of the Upper Palaeolithic around 40,000 YA (Nowell 2010: 438), however, recent palaeoanthropological finds and research have discovered a distinct ‘decoupling’ between early AMH anatomy and later symbolic/modern behaviour, with anatomically similar traits of AMH in fossils pinpointed to east and south Africa to around 200,000 YA (Rightmire 2008: 8, Wood 2005).  However there are problems concurrent with the dating of the hominin fossil record, as Millard (2008: 870) concludes that ‘the dating evidence for many key fossils is poor’.  Typically there are a number of assigned morphological features that mark out Homo sapiens compared to other species in the Homo genus (Table 1).  As Tattersall and Schwartz (2008: 51) note, however impressive the suite of features ‘not all of them are expressed with equal emphasis in all living humans’.  When this is combined with the fossil record of AMH, with individuals often taken as examples for their own long lost skeletal population and the problems inherent in the preservation of skeletal elements (geological pressure, scavenging etc), we should rightly be wary of definitively assigning a species name before comparison with relative contextual remains, stratigraphic layers and other similar period sites (Millard 2008, Pettitt 2005).

General Characteristic Morphological features of AMH:

Cranial:

  • Cranial capacity in excess 1350cc (variable).
  • Distinct chin (inverted T).
  • Relatively veretical frontal bone
  • Relatvely flat non-projecting face.
  • Brow ridge expressed more clearly in males.
  • Round occipital region.
  • Small incisor teeth.

Post Cranial:

  • Narrow thorax.
  • Small and narrow pelvis.
  • Straight limb bones.
  • Typically less ‘robust’, more gracile, then recent ancestors.

Table 1. General morphology for Homo sapiens (Pettitt 2005: 132, Tattersall and Schwartz 2008: 51, Wood 2005: 110). NB see also Pearson’s Table 2 (2008: 39).

Using a cladistics framework, Pearson (2008: 38) highlighted the fact that there are specific difficulties in using statistical measurements of metrical and discrete measurements as having been conceptualised as derived features in AMH crania, with comparison to Neandertal and H. erectus crania.  However there are further problems when trying to establish if the earliest H. sapiens African fossils of Omo Kibish, the Herto crania, or Near Eastern Skhul and Qafzeh fossils fit within the 95% rate of modern features, with results not even reaching the 75% fit of the modern features for AMH (Pearson 2008: 39).  In part this is due to fossils, such as the Herto crania, which are used as the mean of that particular population, which ultimately ‘conflates individual, within-population variation and between-population variation’ (Jurmain et al. 2011, Pearson 2008: 39).  Other problems of quantifying such long chronological morphological differences include the lack of various populations of modern (Australian aboriginals, for example) and certain prehistoric peoples being outside of the 95% confidence to fit the given morphological concept of AMH.  Clearly there needs to be a control on the temporal/geographic population of the AMH under consideration in such studies, when carrying out both the statistical analysis with other fossil hominins and when taking the defining measurements.

Pettitt (2005: 132-137) argues that H. sapiens should be classed into three arbitrary chronological groups of morphological continuity: 1) those of the earliest H. Sapiens, including material from Bodo (Ethopia), Broken Hill (Zambia) and Elandfontein (South Africa) amongst others; 2) Transitional (or archaic) H. sapiens including Herto, Omo Kibish 1 and 2 (Ethiopia), Florisbad (South Africa) and Jebel Irhoud (Morocco); 3) finally AMH including Makapansgat, Border Cave and Equus Cave (South Africa), Taramsa (Egypt), and Dar-es-Soltan (Morocco) examples (see Table 2 below for dates).  This ordering of morphological continuity defines AMH through the evolution of H. sapien traits with retention of H. ergaster traits (earliest), whilst the AMH group compromise clear AMH dating to less than 125,000 YA (Pettitt 2005: 132).  As Pearson (2008: 44) suggests, ‘the process of becoming modern likely occurred as a series of steps, regardless of whether one considers these different steps to be different taxa in a bushy phylogeny or merely different grades in a single evolving lineage’. Pearson (2008: 44) goes on to say that the ‘evolution of modern man should be viewed as a process rather than an event involving rapid morphological change due to drift during population bottlenecks and selection for new advantageous traits or genes, or a combination of the two’, rather than a singular smooth process.  Therefore we should be wary of relying purely on the often sparse fossil record.  Regardless, it is widely recognised that H. Sapiens are a probably daughter species of H. erectus (i.e. as a result of a speciation occurrence) which spread across Africa and into Western Eurasia at the beginning of,  or just before, the Middle Pleistocene (Jurmain et al. 2011, Rightmire 2008: 8).

Recent research has also led to five majority agreements in regards to the tenets of AMH behaviour (Table 2; Nowell 2010: 447). Wood (2005: 109) makes the salient point that early eurocentrism in the search for AMH behavioural origins clouded certain judgements, such as focusing on Western Europe to the detriment of African archaeological sites.

Points of Consensus on Modern Behaviour:

  • The relationship between modern anatomy and modern behaviour is more complex than once thought.
  • Modern behaviour has symbolic thoughts at its core.
  •  Archaeological record of the African Middle Stone Age has rendered invalid the idea of a ‘human revolution’ occurring for the first time in the Upper Palaeolithic of Western Europe.
  • Later Neandertal sites have demonstrated modern behaviour to either some form or some degree, such as personal adornment or symbolic behaviour.
  • The triad of social, cultural and demographic factors are key in understanding variability and patterning in the archaeology record.

Table 2. Agreed points in visioning the concept of modern behaviour (Balter 2011: 21, Nowell 2010: 447, Pettitt 2005, Zilhao 2006; 2010: 1025).

Research (Jurmain et al 2011, Prat et al 2012) has also highlighted symbolic  behaviour in a number of early H. Sapiens sites throughout Africa and the Near East; Balter (2011: 21) highlights Aterian sites in North Africa where various personal and possible symbolic artefacts have been found, whilst Blombos Cave in South Africa (77,000 YA), and Katanda in the DR of Congo (80,000 YA), have some of the earliest symbolic artefacts recovered including incised ochre, worked bone and beads; almost a full 45,000 years before any such artefacts appear in the European record (Jurmain et al. 2011: 298-299).   Mellars (2006: 9383) proposes a model that indicates climatic, environmental and cultural changes around 80,000 to 60,000 YA as major causative agents of cognitive change alongside population pressures in the dispersal of African H. Sapiens.  However Nowell (2010: 441) states that the gradual emergence of behaviours as a mosaic of features, and not as a single revolutionary package, should be considered within the archaeological record, whilst defining that for the majority of researcher’s symbolic language and codified social relationships define modern behaviour.  Mosaic features in fossil hominids have been noted in recent discoveries of the Australopithecus sediba specimen, highlighting a mix of Australopithecus and Homo anatomical features (Wong 2012: 25).

The origins of AMH living outside of Africa have led to the formation of two major competing models in palaeoanthropolog: the multi-regional continuity hypothesis that proposes already living populations of hominins and local populations in Asia, Europe and Africa continued their ‘indigenous evolutionary development from pre-modern Middle Pleistocene forms to anatomically modern human’ (Jurmain et al. 2011: 281), whilst the complete replacement (or out of Africa) hypothesis  proposes that AMH arose in Africa 200,000 YA to completely replace those in Europe and Asia (Table 3; Jurmain et al. 2011: 279).  Critical to the multi-regional hypothesis are the tenets that i) a level of gene flow between geographically separated populations prevented speciation, ii) all living humans derive largely from the species H. erectus, iii) natural selection in regional populations is responsible for the regional variants found in extant populations, and finally, iv) that the emergence of H. sapiens was not restricted to one area per se but was a phenomenon that occurred throughout the geographic range where ‘humans lived’ (Johanson 2001: 1).

aaaaaaaaaaawawawawawawa

Table 3. Timeline of major H. sapiens discoveries, question marks denote tentative dates (Jurmain et al. 2011: 413) (Click to enlarge).

Critical to the complete replacement theory are that i) H. sapiens arose in one place, highly likely to be East/South Africa, ii) H. sapiens ultimately migrated out of Africa, and replaced all human populations without interbreeding, and that iii) modern human variation is a relatively recent phenomenon (Johanson 2001: 1).

Although not all factors of the multiregional hypothesis cannot be falsified, it seems prevalent that H. sapiens originated in Eastern Africa (with Ethiopia so far providing the most stable dated site), and dispersed to Europe and Asia from 65,000 YA onwards in various waves (Table 2; Jurmain et al. 2011: 282, Mellars 2006: 9381).    The two most securely dated sites in Europe for AMH are Pecstera Cu Oase in Romania at 42,000 YA and Buran Kaya III in the Crimea, Ukraine at 31,900 YA (Hoffecker 2009: 16040, Prat et al. 2011).  Unsurprisingly, Hoffecker (2009: 16040) notes that the issue of the mechanism of transition is a ‘controversial topic in palaeoanthropology’.  Arguments have been made that AMH crossed into Eurasia via a Levantine corridor, with the earliest AMH dates from Skhul and Qafzeh in Israel at around 120,000 to 100,000 YA (Wood 2005: 98), whilst recent work in North African Aterian populations from around the same period are pointed out as being possible ancestors to at least some of the H. sapiens who left Africa during this period (Balter 2011: 23).  The palaeoanthropological evidence suggests that they, the Aterians, possessed the right symbolic behaviour, anatomy and favourable climatic conditions to be at least a contender for contributing to one of the waves of H. sapiens leaving (Balter 2011: 22-23).  There are a variety of sites across Europe after 40,000 YA that show a variety of evidence for AMH presence, including the triad of modern human behaviour with symbolic artefacts and modern skeletal morphology.  However, we should not forget that Europe was already populated with the H. Neandertalensis species prior, and co-existed with H. sapiens for approximately 10,000 years or so (Hoffecker 2009: 16040, Wood 2005: 110).  This subject will be tackled shortly.

The most secured dates found in Asia are from areas such as the Sahul region (conjoined landmass of Australia, Papua New Guinea and Tasmania), where it is possible AMH occupied various areas (Wood 2005: 111-112).  It must be remembered that while the ‘dwarf’ species H. floresiensis survived up until 18,000 YA on the island of Flores with temporal overlap between themselves and H. sapiens, it seems unlikely there was regional overlap from the archaeological evidence (Wood 2005: 111).  Curnoe et a.l (2012: 1) note that the AMH fossil record for East Asia is, at this time, poorly recorded owing to a lack of detailed description, rigorous taxonomy classification and a distinct lack of accurately dated fossils.  However there are a few key sites: Liujiang in Southern China has produced a skeleton which, although it lacks exact stratigraphic position, has been dated to an estimated broad range from 153-30,000 YA, whilst the Niah Cave child in East Malaysia has been dated to 45-39,000 YA for the cranium from a recent field and lab program (Curnoe et al. 2012: 2).  Tianyuan cave, just south of the Zhoukoudian cave, has fragmentary evidence of an AMH crania and teeth which are dated to 40,000 YA, with a possible mix of archaic and modern features; the American and Chinese team who excavated it have suggested it is evidence of interbreeding in China with resident archaic populations, but suggest an African origin for the AMH itself (Jurmain et al. 2011: 287).

The above examples highlight problems in understanding the definition of AMH, both anatomically and behaviourally.  With the advent of dispersals from Africa AMH interacted with other hominids, prominent of which are the Neandertals in Eurasia and the elusive Denisovans in Siberia (Krause et al. 2010, Hubin 2009, Noonan 2010, Zilhao 2006).  Genetic evidence is unravelling what it is to be an AMH (Hawks et al. 2007), and there is evidence to suggest that Neandertals contributed up to 4% of non-African modern human DNA via gene flow (Green et al. 2010: 711, Reich et al. 2010: 1057).

Roughly one third of Neandertal mtDNA genetic diversity, dating from 70,000 to 38,000 YA, is comparable to contemporary human populations (Briggs et al. 2009:  319), although Noonan (2010: 550) and Herrera et al. (2009: 253) raise the flag of caution as the majority of Neandertal remains were not collected with their regard to DNA investigation, whilst modern DNA contamination, despite the safeguards, is still prevalent.  Briggs et al. (2009: 321) postulate that low mtDNA diversity throughout much of the Neandertal lineage may indicate a low effective population size, although it could be reflective of AMH direct/indirect  influences as they spread from Africa (interbreeding or out competing for example).  Herrera et al. (2009: 253) note that there are difficulties such as identifying haplotypes indicative of interbreeding.  Nonetheless, as Zilhao et al. (2010: 1027) points out that a Mid-Palaeolithic Iberian Neandertal sites shows distinct features associated with AMH including symbolic behaviour, with ochre and shells displaying evidence of body paint, and organisation skills, which that studies believes is the outcome of demographic pressure, technology and ‘social complexification’ within the Neandertal species itself (Roebroeks et al. 2012: 2).

Figure 1. Phylogenetic tree of complete mtDNA rooted with chimpanzee and bonobo mtDNA, showing geographic origin of mtDNA samples (Krause et al. 2010: 896) (Click to enlarge).

Figure 1. Phylogenetic tree of complete mtDNA rooted with chimpanzee and bonobo mtDNA, showing geographic origin of mtDNA samples (Krause et al. 2010: 896) (Click to enlarge).

Meanwhile Krause et al. (2010: 896) provide evidence that the Denisovans split before Neandertal and AMH at around 1 million YA, whilst Neandertals and H. sapiens ancestors split around 690,000 to 550,000 YA (Jurmain et al. 2011: 270).  Pairwise nucleotide differences indicate that Neandertals differ from modern humans at around 202 nucleotide positions whilst the Denisovan individual differs at 385 positions (Krause et al. 2010: 895), which alongside the phylogenetic evidence (Figure 1), supports a deeper divergence of the Denisovan hominin than between the closer related H. sapiens and Neandertal species.

There is the distinct possibility of admixture; this is reinforced by the apparent coexistence of the surrounding area by Neandertals, AMH and Denisovans in the Altai region at roughly the same time periods, and by the fact that Denisova populations contributed roughly 4-6% present day DNA in AMH Melanesian populations; this suggests they interacted with Melanesian ancestors, but probably not in the Siberia region (Krause et al. 2010: 895, Reich et al. 2010: 1053).  The lack of complete remains and its physically limited location from this suspected new species at Denisova Cave limit our knowledge but tests are continuing.  If this hominin, as hypothesised, had a wide geographical range (Reich et al. 2010: 1059), the question must be asked why we haven’t noticed it before?  Interestingly Abi-Rached et al. (2011: 94) highlight that the fact that as the AMH Eurasian populations mixed with archaic hominids, adaptive introgression of vital immune system components (Human Leukocytes Antigen class 1) helped to provide a mechanism for rapid evolution.  The adapted introgression of the genes now represent more than half of the HLA alleles in modern Eurasians, and were later introduced into African populations (Abi-Rached et al. 2011: 89).  Therefore the definition of AMH must include evidence of interbreeding to some degree.  Future genomic studies in other archaic hominins should provide more information relating to the relationships between species; however it seems clear that gene flow was relatively common in the Upper Pleistocene (Reich et al. 2010: 1059).

Increased AMH demographic growth and geographic spread dated from 80,000 YA to the present, has led to rapid genetic evolutionary selective pressures on features including ‘skin pigmentation, adaptation to cold and diet’ amongst others (Hawks et al. 2007: 20756).  Some of the most dramatic have been associated with the uptake of agriculture during the Neolithic period, both in terms of our ability in coping with disease and changes from interaction via population density (Barnes et al. 2011: 848).  This is partly the result of cultural and ecological reasons (i.e. a biocultural pathway), and Hawks et al. (2007: 20756-20757) remark that in their study it was noted ‘new adaptive alleles continued to reflect demographic growth, (that) the Neolithic and later periods would have experienced a rate of adaptive evolution >100 times higher than characterised most of human evolution’.  Two examples help highlight the effects of biocultural change in modern population; coevolution of humans and cattle since the Neolithic has resulted in distinct populations of modern humans becoming lactose persistence, such as Europeans, whilst other populations, such as African and Asian adults, are largely lactose intolerant (Jurmain et al. 2011: 313).  This is through active selection of breeding cattle which ‘inadvertently selected for the gene that produces lactose persistence in themselves’ (Jurmain et al. 2011: 313); this example shows the geographical distribution of lactose persistence is often related to a history of cultural dependency on fresh milk products.  On the other hand, modern population pressures include the admixture of populations who have had the pressures of urbanisation, agriculture and gene selection for disease loading (such as Tuberculosis) who then interact with indigenous populations, such as Torres Strait Islanders and Papua New Guinea populations, who are not predisposed to deal with TB because of their lack of long term cattle coevolution (Barnes et al. 2011).  The importance is recognising that there is great variation at an environmental genetic level in modern AMH, and this is highly likely to be the case during the long and concurrent evolution of AMH (Jurmain et al. 2011).

In conclusion the definition of AMH comes to thus; either a strict definition of AMH present at around 40-35,000 YA onwards, with the full suite of the triad of anatomically modern skeletal elements, modern behavioural & cognitive functions, and similar genetics to today’s worldwide population (Tattersall & Schwartz 2008), or we can take the view that H. sapiens evolved with a mosaic of features that they themselves appeared at different times during the evolution of AMH (Jurmain et al. 2011, Pettitt 2005).  It is this author’s belief that the origin of H. sapiens species lies at the Omo Kibish site in Eastern Africa as the earliest evidence so far, and the definition of AMH must be taken with accord of the fossil record (Jurmain et al. 2011).  Throughout this paper, a long chronology has been presented and discussed of H. sapiens in the context of human evolution, and consideration has been given to the relatively modern genetic changes in modern human populations (Hawks et al. 2007).  This view belies the complexity of defining AMH, especially as new hominins are found (Krause et al. 2010, Reich et al. 2010, Wong 2012), as the consideration of the context is paramount.  There is inherent variation in the record, as evidenced between the distinct morphological variation between Omo 1 and Omo 2 fossils, leading up to the palaeogenetic and modern genetic variation and morphological in populations from inside and outside Africa (Briggs et al. 2009, Hawks et al. 2007, Harvati et al. 2012).  In comparison, the origin of the Homo genus is still in dispute (Wong 2012: 24) and the chimpanzee fossil record is distinctly lacking (Wood 2005: 69-70).  Only recently has SNP genotyping revealed the extent of Pan troglodytes ellioti as a genetically distinct species (Bowden et al. 2012: 1).  The importance of this is that we should seek to place the well discussed H. sapiens within a larger framework of where hominins (both extant and extinct) diverged, interacted and evolved (see discussion- Patterson et al. 2006: 1106, Wakeley 2008).  The definition of AMH is therefore but one fragment of our long evolutionary history.

Further Sources:

Bibliography:

Abi-Rached, L.,  Jobin, M. J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L. Babrzadeh, F., Gharizadeh, B., Luo, M., Plummer, F. A., Kimani, J., Carrington, F., Middleton, D., Rajalingam, R., Beksac, M., Marsh, S. G. E., Maiers, M., Guethlein, L. A., Tavoularis, S., Little, A., Green, R. E., Norman, P. J., & Parham, P. 2011. The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans. Science. 334 (6052): 89-94.

Adler, D.S. et al., 2008. Dating the Demise: Neanderthal Extinction and the Establishment of Modern Humans in the Southern Caucasus. Journal of Human Evolution. 55: 817–833.

Balter, M. 2011. Was North Africa the Launch Pad for Modern Human Migrations?. Science. 331: 20-23.

Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G. 2011. Ancient Urbanization Predicts Genetic Resistence to Tuberculosis. Evolution. 65 (3): 842-848.

Bowden, R., Macfie, T. S., Myers, S., Hellenthal, G., Nerrienet, E. et al. 2012. Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan Troglodytes Ellioti is a Genetically Distinct Population. PLoS Genet. 8 (3): 1-10. e1002504. doi:10.1371/journal.pgen.1002504

Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., Lalueza-Fox, C., Rudan, P., Brajković D., Kućan, Z., Gusic, I., Schmitz, R., Doronichev, V. B., Golovanova L. V., Rasilla, M. D. E., Fortea, J., Rosas, A. & Pääbo, S. 2009. Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science. 325 (5938): 318-321. doi:10.1126/science.1174462

Curnoe, D., Xeuping, J., Herries, A. I. R., Kanning, B., Tacon, P. S. C., Zhende, B., Fink, D., Yunsheng, Z., Hellstrom, J., Yun, L., Cassis, G., Bing, S., Wroe, S., Shi, H., Parr, W. C. H., Shengmin, H. & Rogers, N. 2012. Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians. PLoS ONE. 7 (3): 1-28. e31918. doi:10.1371/journal.pone.0031918

Finlayson, C., 2004. Neanderthals and Modern Humans: an Ecological and Evolutionary Perspective.Cambridge: Cambridge University Press.

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H., Hansen, N. F., Durna, E. Y., Malaspinas, A., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., GUsic, I & Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., Rasilla, M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin, J. C., Slatkin, M., Neilsen, R., Kelso, J., Lachmann, M., Reich, D. & Paabo, S. 2010. A Draft Sequence of the Neandertal Genome. Science. 328 (5957): 710-722.

Harvati, K., Stringer, C., Grun, R., Aubert, M., Allsworth-Jones, P. & Folorunso, C. A. 2011. The Later Stone Age Calvaria from IwoEleru, Nigeria: Morphology and Chronology. PLoS ONE. 6 (9): 1-8.  e24024. doi:10.1371/journal.pone.0024024

Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. 2007. Recent Acceleration of Human Adaptive Evolution. Proceedings of the National Academy of Sciences. 104 (52): 20753-20758.

Herrera, K. J., Somarelli, J. A., Lowery, R. K. & Herrera R. J. 2009. To What Extent Did the Neanderthals and Modern Humans Interact? Biological Reviews. 84: 245-257.

Hoffecker, J.F. 2009. The Spread of Modern Humans in Europe. Proceedings of the National Academy of Sciences. 106 (38): 16040–16045.

Hubin, J. J. 2009. The Prehistory of Compassion. Proceedings of the National Academy of Sciences. 106 (16): 6429-6430.

Johanson, D. C. 2001. Origins of Modern Human: Multiregional or Out of Africa?. American Institute of Biological Sciences. Accessed at http://www.actionbioscience.org/evolution/johanson.html#primer on the 24th of March 2012.

Jurmain, R., Kilgore, L. & Trevathan, W. 2011. The Essentials of Physical Anthropology, International Edition. Belmont: Wadsworth.

Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P. & Pääbo, S. 2010. The Complete Mitochondrial DNA Genome of an Unknown Hominin from Southern Siberia. Nature. 464: 894-897. doi:10.1038/nature08976

Le Fanu, J. 2009. Why Us? How Science Rediscovered The Mystery of Ourselves. London: HarperPress.

McEwan, I. 2012. The Originality of the Species. The Guardian: Books Section. 23rd March 2012. Accessed at http://www.guardian.co.uk/books/2012/mar/23/originality-of-species-ian-mcewan on the 24th March 2012.

Mellars, P. 2006. Why did Modern Human Populations Disperse from Africaca. 60,000 Years Ago? A New Model. Proceedings of the National Academy of Sciences. 103 (25): 9381–9386.

Millard, A. R. 2008. A Critique of the Chronometric Evidence for Hominid Fossils: 1. Africa and the Near East 500-50KA. Journal of Human Evolution. 54 (6): 848-874.

Noonan, J. P. 2010. Neanderthal Genomics and the Evolution of Modern Humans. Genome Research. 20: 547-553.

Nowell, A. 2010. Defining Behaviour Modernity in the Context of Neandertal and Anatomically Modern Human Populations. Annual Review of Anthropology. 39:  437-454.

Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. 2006. Genetic Evidence for Complex Speciation of Humans and Chimpanzees. Nature. 441: 1103-1108.

Pearson, O. M. 2008. Statistical and Biological Definitions of “Anatomically Modern” Humans: Suggestions for a Unified Approach to Modern Morphology. Evolutionary Anthropology. 17: 38-48.

Pettitt, P. 2005. ‘The Rise of Modern Humans’. In Scarre, C. (ed) The Human Past: World Prehistory & the Development of Human Societies. London: Thames & Hudson. pp 124-175.

Prat, S., Péan, S. C., Crépin, L., Druker, D. G., Puaud, S. J., Valladas, H., Láznicková-Galetova, M., Plicht, J. V. & Yanevich, A. 2011. The Oldest Anatomically Modern Humans from Far Southeast Europe: Direct Dating, Culture and Behaviour. PLoS ONE. 6 (6): 1-13. e20834. doi:10.1371/journal.pone.0020834

Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., Maricic, T., Good, J. M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V. Derevianko, A. P., Hublin, J. Kelso, J., Slatkin, M. & Paabo, S. 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature. 468: 1053-1060.

Rightmire, G. P. 2008. Homo in the Middle Pleistocene: Hypodigms, Variation, and Species Recognition. Evolutionary Anthropology. 17: 8-21.

Roebroeks, W., Sier, M. J., Nielsen, T. K., Loecker, D. D., Parés, J. M., Arps, C. E. S. & Mucher, H. J. 2012.  Use of Red Ochre by Early Neandertals. Proceedings of the National Academy of Sciences. Early Edition. 1-12. doi: 10.1073/pnas.111.2261109

Tattersall, I. & Schwartz, J.H., 1999. Hominids and Hybrids: The Place of Neanderthals in Human Evolution. Proceedings of the National Academy of Sciences, 96: 7117–7119.

Tattersall, I. & Schwartz, J. H. 2008. The Morphological Distinctiveness of Homo Sapiens and Its Recognition in the Fossil Record: Clarifying the Problem. Evolutionary Anthropology. 17: 49-54.

Wakeley, J. 2008. Brief Communication Arising: Complex Speciation of Humans and Chimpanzees. Nature. 452: E3.

Wong, K. 2012. First of Our Kind. Scientific American. 306 (4): 20-29.

Wood, B. 2005. Human Evolution: A Very Short Introduction. Oxford: Oxford University Press.

Zilhao, J., 2006. Neanderthals and Moderns Mixed, and It Matters. Evolutionary Anthropology. 15: 183–195.

Zilhao, J., Angelucci, D. E. Badel-García, E., d’Errico., Daniel, F., Dayet, L., Douka, K., Highm, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascasrós, S., Pérez-Sirvent, C., Roldán-García, C., Vanhaeren, M., Villaverde, V., Wood, R & Zapata, J. 2010. Symbolic use of Marine Shells and Mineral Pigments by Iberian Neanderthals. Proceedings of the National Academy of Sciences. 107 (3): 1023–1028.

Blog News, Views & Reviews

12 Jun

It has been a pretty busy past week or so since I last updated the blog.  As usual I’ve been volunteering in the wonderful city of York, but I’ve also taken the chance to go back and visit my old university friends back in Hull for a few days.  The next post in the Skeletal Series will be added shortly.

In the meantime I’d thought I’d present what blogs I read around the web concerning archaeology and human osteology.

My first port of call is the always informative Powered By Osteons blog by Kristina Killgrove.  Dr Killgrove is a biological anthropologist over at the University of North Carolina Chapel Hill, whose PhD dissertation on mobility and migration in ancient Imperial Rome, can be found here.

One of her latest entries is an edition of Four Stone Hearth.  Four Stone Hearth is a bi-weekly anthropological blog carnival that is hosted on different blog sites each time.  Each edition has links to a number of articles written by various people.  The articles are often interesting, informative and capture the full plethora of all things anthropological.

On the most recent FSH edition, the palaeoanthropologist John Hawks has a weblog entry on his adventures in Rome detailing the relationship between the anthropologist and death.  This entry from Hawks is beautifully wrote and runs the gamut from ancient to modern populations and perceptions how death is remembered and presented.  Hawk’s weblog includes regular updates (I don’t know how he finds the time!) as well as an extensive back catalogue of blog entries, alongside a dedicated database of articles and where to find them on the internet.

Meanwhile over at Bones Don’t Lie, we have Katy Meyers articles on mortuary and bioarchaeology news.  Quite often fascinating and interesting updates, the blog also details her own research interests as she pursues a PhD at Michigan State University.

Anna’s Bones details the thoughts and journeys that the PhD student Anna Barros (at UCL) has gone through, and it is thoroughly recommended.  Her blog entries are vibrant, elegant and are wonderfully evocative.  Although it can be a while between posts, each one is worthy of several re -reads.  In particular her ‘Stripped‘ series discusses her own personal body idiosyncrasies, and her feelings and tribulations through her life.

Lastly we come to a site I have only recently found, as both myself and Confusedious have exchanged various comments and articles when discovering one another’s blogging sites.  The Confusedious science site deals with interesting views and articles on a full range of biological and anthropological subjects.

This, for the moment, brings this entry to a close.  The above are the four main blogs I often read, alongside the mainstream news and archaeological magazines & journals (when the articles are free!).  A full list of websites I frequent, support or am interested in, can be found to the bottom right of this site itself.

Clearly They Are Apes Though...