Archive | Musculoskeletal System RSS feed for this section

Skeletal Series: The Basic Human Osteology Glossary

19 Dec

Introducing the Human Osteology Glossary

It is important for the budding human osteology student that they understand and correctly apply the basic terms used in the discipline to help identify and describe the skeletal anatomy under study.  Since human osteologists study the skeletal remains of anatomically modern humans (Homo sapiens) the terminology used, specifically the anatomical terminology, has to be precise and correct as befitting the medical use of such terms.

Human osteology remains the foundation on which the disciplines of forensic anthropology and bioarchaeology are built upon, although it is noted that the disciplines can be misleading across international divides.  For example, in the United Kingdom bioarchaeology is still used to refer to the study of both human and non-human skeleton remains from archaeological sites, whilst bioarchaeology in the United States normally refers to human remains only.  It should also be noted here that the other related disciplines, such as palaeoanthropology and biological anthropology, study not just the modern human skeleton but also the skeletal and fossilized remains of extant (genera such as Pan, Pongo and Gorilla) and extinct hominins.  Nevertheless the terminology remains the same when describing the skeletal anatomy of both human and non-human individuals.

Glossary Arrangement

This short glossary is intended to provide a basic introduction to the terminology used in the disciplines that utilizes human osteology as a core focus for the research undertaken.  The terminology documented here also includes a brief description of the word and, where possible, an example of its use.  Primarily the glossary acts as a reference post in order to be used in conjunction with the Skeletal Series posts on this site, which help outline and introduce each skeletal element of the human body section by section and as appropriate.  However please note that the glossary is also arranged in a manner in which it befits the student who needs to quickly scan the list in order to find a specific and relevant word.

Therefore the glossary is arranged in a thematic presentation as follows:

1. Discipline Definitions
2. The Human Body:
– a) Macro
– b) Micro
– c) Growth
– d) Disease and Trauma
3. Anatomical Foundations:
– a) Anatomical Planes of Reference
– b) Directional Terminology
– c) Movement Terminology
4. Postmortem Skeletal Change
– a) Postmortem Skeletal Change

The glossary ends with an introduction to the terminology used to describe the postmortem aspects of body deposition.  This is because it is an important aspect and consideration of any skeletal analysis undertaken.  The terminology used in this section leads away from the strictly anatomical terminology of the sections above it and introduces some terms that are used in archaeology and associated disciplines.

Reference Note

Please note that the bibliography provided indicates a number of important texts from which this glossary was compiled.  The key text books highlighted also introduce the study of the human skeleton, from a number of different perspectives, including the gross anatomical, bioarchaeological and human evolutionary perspectives.  Find a copy of the books at your library or order a copy and become engrossed in the beauty of the bones and the evidence of life histories that they can hold.

The Glossary:

1) – Discipline Definitions

Bioanthropology:  A scientific discipline concerned with the biological and behavioral aspects of human beings, their related non-human primates, such as gorillas and chimpanzees, and their extinct hominin ancestors.  (Related Physical Anthropology).

Bioarchaeology:  The study of human and non-human skeletal remains from archaeological sites.  In the United States of America this term is used solely for the study of human skeletal remains from archaeological sites.

Forensic Anthropology:  An applied anthropological approach dealing with human remains in legal contexts.  Forensic anthropologists often work with coroners and others, such as disaster victim identification teams, in analysing and identifying human remains (both soft and hard tissues) from a variety of contexts including but not limited ID’ing remains from natural disasters, police contexts, war zones, genocides, human rights violations, etc.

Human Osteology:  The study of human skeletal material.  Focuses on the scientific interpretation of skeletal remains from archaeological sites, including the study of the skeletal anatomy, bone physiology, and the growth and development of the skeleton itself.   

Palaeoanthropology:  The interdisciplinary study of earlier hominins.  This includes the study of their chronology, physical structure and skeletal anatomy, archaeological remains, geographic spans, etc. (Jurmain et al. 2011).

Physical Anthropology:  Concerned with the biological skeletal remains of both humans and extant and extinct hominins, anatomy, and evidence of behaviour.  The discipline is often considered congruent with the term bioanthropology, or biological anthropology.  (Related Bioanthropology).

2) a. – The Human Body: Macro

Appendicular Skeleton:  The skeletal bones of the limbs.  Includes the shoulder and pelvic girdles, however it does not include the sacrum.  Skeleton SK423 largely consisted of the non-fragmented disarticulated appendicular elements.

Axial Skeleton:  The skeletal elements of the trunk of the body.  Includes the ribs, vertebrae and sternum.  The body of SK424 was particularly fragmented in-situ, with little sign of excavation or post-excavation damage evidenced on the axial skeleton suggesting fragmentation post-burial.

Cortical (Compact) Bone:  The solid and dense bone found in the bone shafts and on the external surfaces of bone itself.  The cortical bone of the mid-shaft of the right humerus of the tennis player displayed increased thickening.  This is, in this individuals case whose physical history is known, due to the predominance of the right arm during intense and long-term use in physical exercise (see Wolff’s Law). 

Dentin (Dentine):  Calcified but slightly resilient dental connective tissue.  In human growth primary dentin appears during growth whereas secondary dentin forms after the root formation of the tooth is complete (White & Folkens 2005: 421).

Diaphysis:  The shaft portion of a long bone.  The diaphysis of the femur is one of the longest shafts found in the human skeleton, as the femur is the longest bone.

Dry Bone:  Refers to archaeological bone where no soft, or wet, tissue survives, hence the bone is dry.  It should be noted that, when subject to x-rays for investigation, archaeological dry bone radiological images are improved due to a lack of soft tissues obscuring the bone condition.

Elements (Skeletal):  Used to refer to each individual bone.  The human adult body has, on average, 206 individual skeletal elements.

Enamel:  Enamel is an extremely hard brittle material which covers the crown of a tooth.

Endosteum:  A largely cellular membrane that lines the inner surface of bones which is ill-defined (White & Folkens 2005: 421).

Epiphysis:  The epiphysis refers to the often proximal and distal ‘caps’ of long bones that develop from a secondary ossification centre.  The epiphysis of the long bones can, when used in conjunction with other skeletal markers of aging, particularly dentition, provide a highly accurate  age-at-death in non-adult human skeletal remains.

Medullary Cavity:  The cavity found inside the shaft of a long bone.  The medullary cavity of the femur is the site of the longest medullary cavity found in the human body.  The medullary cavity is the location where red and yellow bone marrow is stored and where the red and white blood cells are produced. 

Metaphyses:  The metaphyses refer to the expanded and flared ends of the shaft (or diaphysis) of long bones.  Both the femoral and humeral diaphyses display flared distal metaphyses which are indicative of their anatomical positioning.

Morphology:  The form and structure of an object.  The morphology of the femora is dictated by a variety of factors, not least the size, age, sex and weight of the individual.

Musculoskeletal System:  The musculoskeletal system provides the bony framework of the body in which the muscles attach onto and are able to leverage bones to induce movement.  The musculoskeletal system is responsible for a number of core bodily functions, including blood production and nourishment, alongside providing a stable and safe environment for vital organs.

Osteology:  The scientific study of bone.  Bones form the basis of the skeletal system of vertebrate animals, including humans.  In the United States of America bioarchaeology refers to the study of human bones within an archaeological context.

Periosteum:  The thin dense vascular connective tissue that covers the outer surfaces of bone during life, except on areas of articulation.  The periosteum tissue plays an important part in the maintenance of healthy bone, helping to also provide the body with blood via the bone marrow and associated vessels.  The periosteum provides an important area of osteogensis following a bone fracture.

Postcranial Skeleton:  All bones but the mandible and cranium.  The postcranial skeleton of SK543 was exceptionally well-preserved within the grave context but due to grave cutting the cranium and mandible were completely disturbed and not present within the context recorded.

Trabecular (Spongy) Bone:  Refers to the honeycomb like structure of bone found within the cavity of bones themselves.

2) b. – The Human Body: Micro

Cartilage:  Cartilage is a flexible connective tissue which consists of cells embedded in a matrix.  In the human skeletal system cartilage is found between joints, such as the knee and in forms such as the intervertebral disk in the spine and in the ribcage.  There are three types of cartilage: hyaline, fibrocartilage and elastic cartilage in the human skeletal system, although 28 different types of cartilage have now been identified in the human body as a whole (Gosling et al. 2008:9).

Collagen:  Collagen is a fibrous structural tissue in the skeleton which constitutes up to 90% of bone’s organic content (White & Folkens 2005: 42).

Haversian Canal (Secondary Osteons):  Microscopic canals found in compact, or cortical, bone that contain blood, nerve and lymph vessels, alongside marrow.

Hydroxyapatite:  A dense, inorganic, mineral matrix which helps form the second component of bone.  Together with collagen hydroxyapatite gives bone the unique ability to withstand and respond to physical stresses.

Lamellar (Mature) Bone:  Bone in which the ‘microscopic structure is characterized by collagen fibres arranged in layers or sheets around Haversian canals’ (White & Folkens 2005: 423).  Lamellar bone is mechanically strong.  Related woven (immature) bone.

Osteoblast:  Osteoblasts are the ‘bone-forming cells which are responsible for synthesizing and depositing bone material’ (White & Folkens 2005: 424).

Osteoclast:  Osteoclasts are the cells responsible for the resorption of bone tissue.

Osteocyte:  Osteocytes are the living bone cell which is developed from an osteoblast (White & Folkens 2005: 424).

Osteon:  The osteon is a Haversian system, ‘a structural unit of compact bone composed of a central vascular (Haversian) canal and the concentric lamellae surrounding it; a Primary Osteon is composed of a vascular canal without a cement line, whereas the cement line and lamellar bone organized around the central canal characterize a Secondary Osteon‘ (White & Folkens 2005: 424).

Remodeling:  Remodeling is the cyclical process of bone resorption and bone deposition at one site.  The human skeleton continually remodels itself throughout life, and after full growth has been achieved towards the end of puberty.  Further to this bone is a tissue that responds to physical stress and remodels as appropriate. 

Woven (Immature) Bone:  characterized by the haphazard organisation of collagen fibres.  Primarily laid down following a fracture and later replaced by lamellar bone.  Woven bone is mechanically weak.  Related lamellar (mature) bone.

2) c. – The Human Body: Growth

Appositional Growth:  The process by which old bone that lines the medullary cavity is reabsorbed and new bone tissue is grown beneath the periosteum, which increases the bone diameter.

Endochondral Ossification:  One of two main processes of bone development in which cartilage precursors (called cartilage models) are gradually replaced by bone tissue (White & Folkens 2005: 421).

Epiphyseal (Growth) Plate:  The hyaline cartilage plate found at the metaphyses of the long bones during growth of the individual (i.e. non-adults), where bone growth is focused until full growth cycle has been completed.

Idiosyncratic:  Referring to the individual.  The normal morphology of the human skeleton, and its individual elements, is influenced by three main factors of variation: biological sex (sexual dimorphism), ontogenetic (age), and idiosyncratic (individual) factors.

Intramembranous Ossification:  One of two main processes of ‘bone development in which bones ossify by apposition on tissue within an embryonic connective tissue membrane’ (White & Folkens 2005: 422).

Ontogeny:  The growth, or development, of an individual.  Ontogeny can be a major factor in the morphological presentation of the human skeleton.

Osteogenesis:  The formation and development of bone.  Embryologically the development of bone ossification occurs during two main processes: intramembranous and endochondral ossification.

Wolff’s Law:  Theory developed by German anatomist and surgeon Julius Wolff (1836-1902) which stated that human and non-human bone responded to the loads, or stresses, under to which it is placed and remodels appropriately within a healthy individual.

Sexual Dimorphism:  The differences between males and females.  The human skeleton has, compared to some animal species, discrete differences in sexual dimorphism; however there are distinct functional differences in the morphology of certain elements which can be used to determine biological sex of the individual post-puberty.

2) d. – The Human Body: Disease and Trauma

Atrophy:  The wastage of an organ or body tissue due to non-use.  Atrophy can be an outcome of disease processes in which the nerves are damaged, leading to the extended, or permanent, non-use of a limb which can lead to muscle wastage and bone resorption.

Blastic Lesion: Expansive bone lesion in which bone is abnormally expanded upon as part of part of a disease process.  The opposite of lytic lesion.

Calculus: Tartar; a deposit of calcified dental plaque on the surface of teeth.  The calculus found on the teeth of the archaeological skeleton can contain a wealth of information on the diet and extramasticatory activities of the individual.

Callus:  The hard tissue which is formed in the osteogenic (bone cell producing) layer of the periosteum as a fracture repair tissue.  This tissue is normally replaced by woven bone, which is in turn replaced by lamellar (or mature) bone as the bone continues to remodel during the healing process.

Caries:  Caries are ‘a disease characterized by the ‘progressive decalcification of enamel or dentine; the hole or cavity left by such decay’ (White & Folkens 2005: 420).  The extensive caries present on the 2nd right mandibular molar of Sk344 nearly obliterates the occlusal (chewing) surface of the tooth.

Compound Fracture:  A fracture in which the broken ends of the bone perforate the skin.  A compound fracture can be more damaging psychologically to the individual, due to the sight of the fracture itself and soft tissue damage to the skin and muscle.  Compound fractures also lead to an increased risk of fat embolism (or clots) entering the circulatory system via marrow leakage, which can be potentially fatal.

Dysplasia:  The abnormal development of bone tissue.  The bone lesions of fibrous dysplasia display as opaque and translucent patches compared to normal healthy bone on X-ray radiographic images.

Eburnation: Presents as polished bone on surface joints where subchondral bone has been exposed and worn.  Osteoarthritis often presents at the hip and knee joints where eburnation is present on the proximal femoral head and distal femoral condyle surfaces, alongside the adjacent tibia and iliac joint surfaces.

Hyperostosis:  An abnormal growth of the bone tissue.  Paget’s disease of bone is partly characterized by the hyperostosis of the cranial plates, with particularly dense parietal and frontal bones.

Hyperplasia:  An excessive growth of bone, or other, tissues.

Hypertrothy:  An increase in the volume of a tissue or organ.

Hypoplasia:  An insufficient growth of bone or other tissue.  Harris lines are dense transverse lines found in the shafts of long bones, which are indicative of arrested growth periods, as non-specific stress events, in the life of the individual.  Harris lines can often only be identified via X-ray radiography or through visual inspection of internal bone structure.

Lytic Lesion:  Destructive bone lesion as part of a disease process.  The opposite of a blastic lesion.  Syphilitic lytic bone lesions often pit and scar the frontal, parietal and associated facial bones of the skull.

Osteoarthritis:  Osteoarthritis is the most common form of arthritis, which is characterized by the destruction of the articular cartilage in a joint.  This often leads to eburnation on the bone surface.  Bony lipping and spur formation often also occur adjacent to the joint.  This is also commonly called Degenerative Joint Disease (DJD) (White & Folkens 2005: 424).

Osteophytes:  Typically small abnormal outgrowths of bone which are found at the articular surface of the bone as a feature of osteoarthritis.  Extensive osteophytic lipping was noted on the anterior portion of the vertebrae bodies of T2-L3 which, along with the evidence of eburnation, bony lipping and spurs presenting bilaterally on the femora and tibiae, present as evidence of osteoarthritis in SK469.

Pathognomonic:  A pathological feature that is characteristic for a particular disease as it is a marked intensification for a diagnostic sign or symptom.  A sequestrum (a piece of dead bone that has become separated from normal, or healthy, bone during necrosis) is normally considered a pathgonomic sign of osteomyelitis. 

Pathological Fracture:  A bone fracture that occurs due to the result of bones already being weakened by other pathological or metabolic conditions, such as osteoporosis (White & Folkens 2005: 424).

Palaeopathology:  The study of ancient disease and trauma processes in human skeletal (or mummified) remains from archaeological sites.  Includes the diagnosis of disease, where possible.  A palaeopathological analysis of the skeletal remains of individuals from the archaeological record is an important aspect of recording and contextualising health in the past.

Periodontitis:  Inflammation around the tissues of a tooth, which can involve the hard tissues of the mandibular and maxilla bone or the soft tissues themselves.  Extensive evidence of periodontitis on both the mandible and maxilla suggests a high level of chronic infection.

Periostitis: The inflammation of the periosteum which is caused by either trauma or infection, this can be either acute or chronic.  The anterior proximal third of the right tibia displayed extensive periostitis suggesting an a persistent, or long term, incidence of infection.

Radiograph:  Image produced on photographic film when exposed to x-rays passing through an object (White & Folkens 2005: 425).  The radiographic image of the femora produced evidence of Harris lines which were not visible on the visual inspection of the bones.

3) a. – Anatomical Planes of Reference

Anatomical Position (Standard):  This is defined as ‘standing with the feet together and pointing forward, looking forward, with none of the leg bones crossed from a viewer’s perspective and palms facing forward’ (White & Folkens 2005: 426).  The standard anatomical position is used when referring to the planes of reference, and for orientation and laying out of the skeletal remains of an individual for osteological examination, inventory, and/or analysis.

Coronal (frontal/Median):  The coronal plane is a vertical plane that divides the body into an equal forward and backward (or anterior and posterior) section.  The coronal plane is used along with the sagittal and transverse planes in order to describe the location of the body parts in relation to one another.

Frankfurt Horizontal:  A plane used to systematically view the skull which is defined by three osteometric points:  the right and left porion points (near the ear canal, or exterior auditory meatus) and left orbitale.

Oblique Plane:  A plane that is not parallel to the coronal, sagittal or transverse planes.  The fracture to the mid shaft of the left tibia and fibula was not a transverse or spiral break, it is an oblique fracture as evidenced by the angle of the break. 

Sagittal:  A vertical plane that divides the body into symmetrical right and left halves.

Transverse:  Situated or extending across a horizontal plane.  A transverse fracture was noted on the midshaft of the right femur.  The fracture was indicative of a great force having caused it, likely in a traumatic incident.

3) b. – Anatomical Directional Terminology

Superior:  Superior refers towards the head end of the human body, with the most superior point of the human body the parietal bone at the sagittal suture (White & Folkens 2005: 68).

Inferior:  Inferior refers towards the foot, or the heel, which is the calcaneus bone.  Generally this is towards the ground.  The tibia is inferior to the femur.

Anterior:  Towards the front of the body.  The sternum is anterior to the vertebral column.

Posterior:  Towards the back of the body.  The occipital bone is posterior to the frontal bone of the cranium.

Proximal:  Near the axial skeletonThe term is normally used for the limb bones, where for instance the proximal end of the femur is towards the os coxa.

Medial:  Towards the midline of the body.  The right side of the tongue is medial to the right side of the mandible.

Lateral:  The opposite of medial, away from the midline of the body.  In the standard anatomical position the left radius is lateral to the left ulna.

Distal:  furthest away from the axial skeleton; away from the body.  The distal aspect of the humerus articulates with the proximal head of the radius and the trochlear notch of the ulna.

Internal:  Inside.  The internal surface of the frontal bone has the frontal crest, which is located in the sagittal plane.

External: Outside.  The cranial vault is the external surface of the brain.

Endocranial:  The inner surface of the cranial vault.  The brain fills the endocranial cavity where it sits within a sack.

Ectocranial:  The outer surface of the cranial vault.  The frontal bosses (or eminences) are located on the ectocranial surface of the frontal bone.

Superficial:  Close to the surface of the body, i.e. towards the skin.  The bones of the cranium are superficial to the brain.

Deep:  Opposite of superficial, i.e. deep inside the body and far from the surface.  The lungs are deep to the ribs, but the heart is deep to the lungs.

Palmar:  Palm side of the hand.  The palm side of the hand is where the fingers bear fingerprints.

Plantar:  The plantar side of the foot is the sole.  The plantar side of the foot is in contact with the ground during normal ambulation.

Dorsal:  Either the top of the foot or the back of the hand.  The ‘dorsal surface often bears hair whilst the palmar or plantar surfaces do not’ (White & Folkens 2005: 69).

3) c. – Anatomical Movement Terminology

Abduction:  Abduction is a laterally directed movement in the coronal plane away from the sagittal, or median, plane.  It is the opposite of adduction.  Standing straight, with the palm of the left hand anterior, raise the left arm sideways until it is horizontal with the shoulder: this is the action of abducting the left arm.

Adduction:  Adduction is the medially directed movement in the coronal plane towards the sagittal, or median, plane.  It is the opposite of abductionStanding straight, with the palm of the right hand anterior, and the right arm raised sideways until it is horizontal with the shoulder, move the arm down towards the body.  This is adduction.

Circumduction:  Circumduction is a ‘circular movement created by the sequential combination of abduction, flexion, adduction, and extension’ (Schwartz 2007: 373).  The guitarist who performs the action of windmilling during playing is circumducting their plectrum holding limb.

Extension:  Extension is a movement in the sagittal plane around a transverse axis that separates two structures.  It is the opposite of flexionThe extension of the forearm involves movement at the elbow joint.

Flexion:  A bending movement in the saggital plane and around a transverse axis that draws two structures toward each other (Schwartz 2007: 374).  It is the opposite of extensionThe flexion of the forearm involves movement at the elbow joint.

Lateral Rotation:  The movement of a structure around its longitudinal axis which causes the anterior surface to face laterally.  It is the opposite of medial rotation.

Medial Rotation:  The movement of a structure around its longitudinal axis that causes the anterior surface to face medially.  It is the opposite of lateral rotation (Schwartz 2007: 376).

Opposition: The movement of the ‘thumb across the palm such that its “pad” contracts the “pad” of another digit; this movement involves abduction with flexion and medial rotation’ (Schwartz 2007: 377).

4) a. – Postmortem Skeletal Change

Antemortem:  Before the time of death.  The evidence for the active bone healing on both the distal radius and ulna diaphyses, with a clean fracture indicating use of a bladed instrumented, suggests that amputation of the right hand occurred antemortem. 

Bioturbation:  The reworking of soils and associated sediments by non-human agents, such as plants and animals.  Bioturbation can lead to the displacement of archaeological artefacts and structural features and displace deposited human skeletal bone.  Evidence of bioturbation in the cemetery was noted, as irregular tunnels were located across a number of different grave contexts suggesting the action of a burrowing or nesting mammal.  This led to the disarticulation of skeletal material within the grave contexts themselves which, on first investigation, may have led to an incorrect analysis of the sequence of events following the primary deposition of the body within the grave.

Commingled:  An assemblage of bone containing the remains of multiple individuals, which are often incomplete and heavily fragmented.  The commingled mass grave found at the Neolithic site of Talheim, in modern southern Germany, suggest that, along with the noted traumatic injuries prevalent on the individuals analysed, rapid and careless burial in a so-called ‘death pit’ took place by the individuals who carried out the massacre.  The site is a famous Linearbandkeramik (LBK) location which dates to around 5000 BC, or the Early European Neolithic.  Similar period mass burials include those at Herxheim, also in Germany, and Schletz-Asparn in nearby Austria.

Diagenesis:  The chemical, physical, and biological changes undergone by a bone through time.  This is a particularly important area of study as the conservation of bones must deal with bacteria and fungal infection of conserved bone if the skeletal material is to be preserved properly.  Analysis of the diagenesis of skeletal material can also inform the bioarchaeologist of the peri and postmortem burial conditions of the individual by comparing the environmental contexts that the bone had been introduced to.

Perimortem: At, or around, the time of death.  The decapitation of SK246 occurred perimortem as evidenced by the sharp bladed unhealed trauma to the associated body,  pedicles, lamina and spinal arches of the C3 and C4 vertebrae.

Postmortem: Refers to the period after the death of the individual.  It is likely that the body had been moved postmortem as indicated by position of the body in the bedroom and by the extensive markers on the skin, suggesting physical manipulation and accidental contusions.  Further to this the pooling of the blood within the first few hours postmortem was not indicative of where the body was located at the time of discovery.

Postmortem Modification:  Modifications, or alterations, that occur to the skeletal remains after the death of the individual.  No postmortem modification of the skeletal elements of SK543 was noted, however extensive evidence of bioturbation in the form of root action was noted on across the majority (> 80%) of the surface of the surviving skeletal elements recovered.

Taphonomy:  The study of processes that can affect the skeletal remains between the death of the individual and the curation, or analysis, of the individual.  There are a variety of natural and non-natural taphonomic processes that must be considered in the analysing of human skeletal material from archaeological, modern and forensic contexts.  This can include natural disturbances, such as bioturbation, or non-natural, such as purposeful secondary internment of the body or skeletal remains.

Note on the Terminology Used & Feedback

The terminology used above, and their definitions, are taken in part from the below sources.  Direct quotations are referenced to the source and page.  They, the sources in the bibliography, are a small handful of some of the exceptional books available which help to introduce the human skeletal system and the importance of being able to identify, study and analyse the bones in a scientific manner.  The human skeletal glossary present here is subject to revision, amendments and updates, so please do check back to see what has been included.  Finally, I heartily advise readers to leave a comment if revisions, or clarifications, are needed on any of the terms or definitions used in the glossary.

Bibliography & Further Reading

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore, I., Willan, P. L. T., Bentley, A. L., Davies, J. T. & Hargreaves, J. L. 2008. Human Anatomy: Colour Atlas and Texbook (5th Edition). London: Mosby Elsevier.

Jurmain, R., Kilgrore, L. & Trevathan, W. 2011. Essentials of Physical Anthropology. Belmont: Wadsworth.

Larsen, C. S. 1997. Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.

Lewis, M. E. 2007. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease (3rd Edition). Stroud: The History Press.

Schwartz, J. H. 2007. Skeleton Keys: An Introduction Human Skeletal Morphology, Development, and Analysis (2nd Edition). New York: Oxford University Press.

White, T. D. & Folkens, P. A. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Advertisements

Body Worlds Vital Exhibition Comes To Life

11 May

Just a quick post here to highlight an exhibition that may be of interest to readers of this blog.

The International Centre for Life, located in Newcastle upon Tyne, England, is playing host to the Gunther von Hagens’ Body Worlds Vital exhibition from the 17th of May to the 2nd of November 2014.  This  promises to be an interesting opportunity for the public to see first hand the exhibition of human bodies and associated prosected organs and tissues, and a chance to learn about the value of human anatomy and physiology.  As well as the main exhibition there will also be numerous special events taking place throughout the seven month showing.  This includes the opportunity to attend public lectures on the ethics of displaying dead individuals, the relationship between art and the dead (featuring one Paul Koudounaris) and the chance to learn how to draw the human body, amongst other topics as yet to be disclosed.

body-worlds-vital---the-exhibition-of-real-human-bodies-body-worlds-vital-life-science-centre-800x360

Exhibition at the Centre for Life in Newcastle-upon-Tyne, England. The display has a number of human bodies and prosected organs and tissues on show, often promoting a healthy lifestyle message. A number of the bodies are placed into classical poses from the Renascence era.  Image credit: Centre for Life.

The Body Worlds organisation has been around for a while now and is currently running a number of exhibitions around the world, although it has not been without its criticisms (see below).  The International Centre for Life itself is a pretty unique complex of buildings (a science village) which plays a major focus in funding and researching the life sciences in the heart of Newcastle, as well providing a family friendly interactive museum at the Centre for Life itself.

Ethics

The bioarchaeology researcher Jess Beck, over at Bone Broke, has a particularly good blog entry detailing the varied views on the ethics of displaying human remains for the public and her post mentions specific criticisms of a previous incarnation of Body Worlds.  This has focused, in the past, on the actual providence of the bodies of the individuals on display and of the actual feasibility of the anatomical positions of the bodies themselves (Moore & Brown 2004, see this 2006 NPR article for further details).  The Body Worlds Vital exhibition has made explicit announcements stating that each and every body or organ on display has been donated specifically for the Body Worlds Vital exhibition with the blessing of the person when they were alive.  The Body Worlds Vital exhibition, housed at the Life Science Centre, has been thoroughly vetted by the Human Tissue Authority and the exhibition approved (the report can be read here).

The Exhibition

I have been twice now to view the exhibition, and I really think that it pays to visit these types of exhibitions a few times.  The first time I visited by myself, allowing plenty of time to become acquainted with the outlay and display of the human bodies.  The second time I went with a few friends of mine and experienced a different kind of interaction with the displays.  Each time I went I saw a mixed age audience with both women and men of all stripes taking in the show.  Most importantly I saw enthused children looking at the bodies, asking their parents what each part of the body does and why, sometimes asking pretty tough and interesting questions (‘how many red blood cells are there in the body?’).  This was fantastic to see and especially parents taking their time to explain the human body, the differences as the body ages and the anatomical differences between the sexes, to their children.

The exhibition layout seemed a bit all  over, with no main overarching theme, I had expected a lifespan approach with the bodies displayed in various approaches as you went along but instead they were placed along the edge of the exhibition length punctuated by prosected tissues.  Each little area often a health point (obesity, cancer, dementia and over-drinking to name but a few) highlighted with a diseased and non-diseased specimen on show.  Personally it was a bit too black and white moral wise, no care giving was mentioned.  The terminology sometimes changed from the common name (collar bone) to the medical (sub-clavian  artery), which may confuse visitors as to the medical terms used- it would have made more sense to stick to one approach and to explain it to the viewer what precise terms used meant.

The bodies themselves were spell-binding although all lacked adipose fat, which had been removed as a part of the plastination process.  This made me curious as it highlighted ‘perfect’ bodies, whereas in real life most people have, and need, an amount of body fat for survival.  Furthermore the individuals are not named, as a matter of course, as the individuals had only died within the past few decades.  But it did bring up an interesting discussion point with my friend Will in the pub afterwards.  Archaeology often deals with the nameless dead, whereas this actively made the bodies anonymous, to represent a human ‘individual’ and not a person with a family or a social package.  A part of me still can’t help but wonder what their lives were like, who did they love and what did they do with their lives.  The posing of the fleshed bodies was certainly unique and allowed for an in-depth look into the musculature and nervous systems of several individuals.

Overall I really felt that the public had the opportunity and chance to look at the human body in all of its wonder.  The body was not hiding in morgues, research rooms or funeral homes, it was on display for all to admire and learn from.  Visit, you will not be disappointed.

Preserving Bodies

Whilst this is just a quick post, I would like to highlight that the plastination technique that Gunther von Hagens uses is but one method of preservation for cadaveric material.

The Centre for Anatomy and Human Identification, at the University of Dundee in Scotland, currently uses a fascinating technique called the Thiel Cadaver Facility to preserve human cadavers for use in anatomical and forensic laboratory sessions.  This soft-fix method preserves the body’s tissues and ensures a life-like quality of flexibility which enables tissues such as muscles and the skin to be flexed fully during teaching and dissections sessions.  The Thiel process, although long, also helps to retain the original hues of the body as opposed to the usual formaldehyde method, which usually leaves bodies and tissues looking pale and anaemic.

Further Information

  • A detailed Centre for Life FAQ on the Body Worlds Vital exhibition can be found here.
  • Learn about the history and the aims of the science village The International Centre for Life here.
  • Jess Beck’s Bone Broke entry on the ethics of displaying human remains can be found here.  Particularly of interest is the double standard of criticism that exists in the ethics between museum and academic institutions displaying of human remains compared to the ‘overtly commercial nature’ of the Body Worlds style of exhibition of human remains.  It is a thoughtful point that Beck raises in her blog entry.
  • Visit Empire de la Mort, the website of artist, historian and photographer Paul Koudounaris.
  • Learn about Gunther von Hagens intriguing method of plastination that he uses on both human and animal cadavers.
  • Learn about the Thiel cadaver technique here or here, which is currently being pioneered in the UK at the University of Dundee.

Bibliography

Moore, M. C. & Brown, C. M. 2004. Gunther Von Hagens and Body Worlds Part 1: The Anatomist as Prosektor and Proplastiker. The Anatomical Record Part B: The New Anatomist. 267B (1): 8-14. (Open Access).

Skeletal Series 11: The Human Foot

4 Sep

The human foot is as distinctive and as complex as the human hand (D’Août et al.  2010).  The foot, or Pes, forms the distal terminus of the leg.  It helps to perform the two basic important functions of shock absorption and propulsion during bipedal locomotion, both of which require a high degree of stability.  The foot bones are the serial homologs of the hand bones an each foot individually is comprised of 26  individual skeletal elements as opposed to the hand’s 27  individual skeletal elements, indicative of the differing evolutionary roles of both limbs with the digits undergoing reduction and modification in mammals (White & Folkens 2005: 225).

As White & Folkens (2005: 292) note, the ‘human foot has changed dramatically during its evolution from a grasping organ to a structure adapted to bipedal locomotion’, where ‘mobility, flexibility and grasping ability has been lost’.  As humans are bipedal walkers the feet must take the full weight of the body during locomotion and this is reflected in hard and soft tissue anatomy (D’Août et al. 2008, D’Août et al. 2010, Gosling et al. 2008, Jarmey 2003).  The diagram below demonstrates the robust and compact nature of the pes elements.

Foooooot

The human foot, highlighting the articulated individual skeletal elements in dorsal and lateral view. Note the arch of the foot, the size of the calcaneus and general robusticity of the bones in comparison to the hand bones (Image credit: WebMD 2013).

Excavation

The excavation of the human skeleton should, where possible, be conducted with patience and great care for the recovery of all skeletal material possible (Brothwell 1981).  The elements that make up the foot, a total of 26 individual bones altogether (see below), are sturdy and largely compact bones, although it is likely that there will not be complete recovery of the distal phalanges due to their smaller size.  In supine and crouched burials the foot bones are likely to survive, although care must be taken when excavating at an unknown burial depth (Larsen 1997).  In cremation remains of individuals from archaeological sites it is still possible for certain elements to be recognised and described, especially in the case of the compact tarsal bones (Mays 1999).  In crowded burial grounds where the body is laid out in a supine position (lying flat on the back), as n the photograph below, burials often intersect each other, cutting off the lower part of the legs (Mays 1999).  This is a common feature in crowded burial grounds, and care must be taken when excavating and assigning individual skeletal elements to specific individual skeleton’s (Brothwell 1981).

bones brodsworth 07pic3 - Copy

A photograph of a Medieval burial ground near Brodsworth, Yorkshire, UK, from the 2007 excavation. Note the orientation and sequential laying of supine burials, and how the lower portion of the legs have been covered or destroyed by other burials. Courtesy of the University of Hull and the Brodsworth project.

Basic Musculature and Skeletal Anatomy

There are 26 bones in the human foot which are grouped into 7 tarsals, 5 metatarsals and 14 phalanges, for a total of 33 joints, of which 20 are actively articulated (See image below for skeletal elements in articulation, and Gosling et al. 2008, Mays 1999, White & Folkens 2005, for further reference).  The main joints of the foot itself include the transverse tarsal joint and tarsometatarsal joint (see figure below).  The talocrural (ankle) joint, the articulation between the leg and the foot, forms an important part of the stability of the foot, one of the main differences behind the pes and the manus (the wrist is extremely movable and flexible in comparison to the ankle).  Unlike the hand the foot cannot grasp and is not capable of fine motor movement, however the adipose tissue and plantar fascia (or aponeurosis) is tightly packed underneath the heel (calcaneus bone) for shock absorption during locomotion (Gosling et al. 2008: 304).  The stability of the ankle joint is strengthened by the wedge shaped articulation of the talus and calcaneus bones and by the strong collateral ligaments helping to tightly pack the anatomy during movement (Gosling et al. 2008: 304-305).

footbones

The individual sections and bones of a right sided human foot, which includes the tarsals, metatarsals, and phalanges from proximal to distal (Image credit: Encyclopedia Britannia 2007).

It is important to note here the two main arches of the human foot, the transverse arches and the medial and lateral longitudinal arches.  The functional anatomy of the arches allows the foot to remain stable during the pressures and energy exertion of locomotion but also retain flexibility so that it can grip different surfaces whilst enhancing forward propulsion (Gosing et al. 2008: 309).  The transverse arch is located along the cuneiforms, the cuboid bone and all of the metatarsal bases, and simply forms a domed shaped which strengthens the foot during locomotion.  The medial longitudinal arch is the highest of the arches and runs along the instep of the foot, alongside the calcaneus, talus, navicular, and cuneiform bones and up to the first three metatarsals (Gosling et al. 2008: 309).  The lateral longitudinal arch is lower and flatter than the media arch and runs alongside the calcaneus, the cuboid, and the fourth and fifth metatarsals (Gosling et al. 2008: 2010).

The arches are supported in their skeletal frame by a complex arrangement of extrinsic and intrinsic muscles, ligaments and tendons.  The sole of the foot contains numerous intrinsic muscles which mimic the muscles found in the hand, which include digitorum (flexor/abductor) and lumbrical muscles, whilst the plantar view houses the inter-osseus planar muscles (Gosling et al. 2008: 284).  It is worth remembering that the majority of the larger muscles that articulate and move the foot are located in the leg itself (soleus, gastrocnemius, and the anterior/posterior tibial muscles).  Although I will not discuss the soft tissues further, I highly recommend the ‘Human Anatomy Colour Atlas and Textbook’ by Gosling et al. (2008) as a key reference source.  The book has a high number of quality dissection photographs and anatomical diagrams clearly highlighting the different muscle, ligament and tendon structures.

Skeletal Elements: Tarsals

The 7 tarsal bones of the foot help to form the longitudinal and transverse arches of the foot, which is often called the tarsus.  The talus articulates superiorly with the distal tibia and fibula, the calcaneus forms the heel of the foot and supports the talus (White & Folkens 2005: 291).  The navicular sites between the 3 cuneiforms and the head of the talus (White & Folkens 2005: 292).  The 3 cuneiforms and the cuboid act as a second row of tarsal bones and articulate with the proximal heads of the 5 metatarsals.

tarsals_labeled

Dorsal view of the tarsal elements and proximal metatarsals (Image credit: University of Cincinnati).

The Talus

The talus (astragalus in animals) is the 2nd largest tarsal and sits atop of the calcaneus, between the tibia and the fibula.  It is distinct in it’s saddle shape, with a head (that sides medially when viewed from above) and a body that forms the posterior portion of the bone.

The Calcaneus

The largest tarsal, forming the heel bone, the calcaneus is located inferior of the talus and supports the distal portion of the foot.  An intact calcaneus is extremely distinct, and can be sided by placing the ‘heel’ away from you and the articular surfaces superiorly, and the shelf (sustentaculum tali) should point the side it is from.

The Cuboid

The cuboid is located on the lateral side of the foot, between the calcaneus and the 4th and 5th metatarsals.  It is distinct in appearance because of its large size with a cuboidal body.  There is no articular surface on the lateral side of the bone, and the inferior surface has a pronounced cuboid tuberosity.

The Naviculuar

The navicular sits snugly between the talus and the cuneiform elements, and has a distinct concave proximal surface.  A tubercle points medially when viewed from the view of the talus.  It is similar in shape to the scaphoid carpal.

The Cuneiforms:

Medial

The medial cuneiform is the largest of the three cuneiforms, sitting between the navicular and base of the first metatarsal.  It is less of a wedge shape than the other two cuneiforms, and distinguished by it’s ‘kidney-shaped facet for the base of the first metatarsal’ (White & Folkens 2005: 298).

Intermediate

This cuneiform is the smallest of the cuneiforms and is located between navicular and the 2nd metatarsal base.  It articulates on either side with the lateral and medial cuneiforms.  The non-articular dorsal surface is key for siding, with a projecting surface points towards the side it comes from when the concave facet is pointed away from the holder (White & Folkens 2005: 298).

Lateral

Located at the centre of the foot, and intermediate in size between the intermediate and medial cuneiform, the lateral cuneiform sits at the base of the foot.  It articulates distally with the 2nd, 3rd and fourth metatarsal bases, proximally with the navicular, medially with the intermediate cuneiform and laterally the cuboid (White & Folkens 2005: 299).

Metatarsals

The 5 rays of the metatarsals are typically labelled as MT 1-5, with MT1 representing the hallux, or the big toe (as the thumb is named the pollex).  The metatarsals are all ‘tubular bones with rounded distal articular facets (heads) and more squarish proximal ends (bases)’ (White & Folkens 2005: 300).  They are more easily sided by the morphology of their bases.  It is important to note that each of the tarsals in the distal row (either of the 3 cuneiforms or the cuboid above) articulates with one or more of the metatarsal bases (White & Folkens 2005: 300).  The first metatarsal is the most massive and squat, whilst all non hallucial metatarsals articulate with each other.  The fifth metatarsal bears a distinctive blunt styloid process on it’s lateral side that makes it fairly identifiable.

metatarsal-phalangeal-joint

A basic dorsal view of the metatarsal and phalangeal bones in the right foot. Note that the hallux (first digit medially) has only a proximal and a distal phalanx whilst the other digits have a proximal, intermediate and distal phalanx (Source).

Phalanges

The foot phalanges are the same in design as the hand phalanges with heads, bases and shafts but are much shorter and squatter than the hand phalanges.  Again they come  in three rows, with 5 proximal phalanges4 intermediate phalanges and 5 distal phalanges;  it should be noted that the MT1 hallux has, as does the thumb (pollex), only the proximal and distal phalanges with no intermediate phalanx, and is remarkably more chunkier then either of the other four rays.

Each Proximal Phalanx displays a ‘single, concave proximal facet for the metatarsal head and a spool-shaped surface distally’ (White & Folkens 2005: 306).

Each Intermediate Phalanx displays a ‘double proximal articular facet for the head of the proximal phalanx’, and again have a trochlea shaped distal articular facet (White & Folkens 2005: 306).

Each Distal Phalanx displays a double articular proximal facet for the head of the intermediate phalanx and a terminal tip of the bone, resulting in a non-articular pad (White & Folkens 2005: 307).

These phalanges are all much shorter than their companions in the hand, with the foot phalanges having a more circular shaft cross section compared to the D shape  shaft of the hand phalanges.  Foot phalanges generally display a more constrictive shaft than hand phalanges, although it can be difficult to side them and it is best done with a full replica or whole specimens for comparative analysis (White & Folkens 2005: 308).  

Further Online Sources

  • A detailed map of each element and the surrounding musculature (as well as relaxing classical music!) can be found on the website of the UMFT Department of Anatomy and Embryology site.  Be aware there are detailed anatomical prosection and dissection diagrams, but it is a free, fascinating and wonderful source (and with the music especially relaxing!).
  • A number of websites have detailed diagrams and photographs of the foot from a medial/lateral and a dorsal/planar view, including this site and this one.
  • Finally, do you know your tarsal bones? Test yourself here!

Bibliography

Brothwell, D. R. 1981. Digging Up Bones: The Excavation, Treatment and Study of Human Skeletal Remains.  Ithica: Cornell University Press.

D’Août, K., Pataky T.C., De Clercq, D. & Aerts, P. 2009. The Effects of Habitual Footwear Use: Foot Shape and Function in Native Barefoot Walkers. Footwear Science1 (2): 81. doi:10.1080/19424280903386411 

D’Août, K., Meert, L., Van Gheluwe, B., De Clercq, D. & Aerts, P. 2010. Experimentally Generated Footprints in Sand: Analysis and Consequences for the Interpretation of Fossil and Forensic Footprints. American Journal of Physical Anthropology141: 515–525. doi: 10.1002/ajpa.21169

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore I., & Willan P. L. T. 2008. Human Anatomy Color Atlas and Text Book. Philadelphia: Mosby Elsevier.

Jarmey, C. 2003. The Concise Book of Muscles. Chichester: Lotus Publishing. 

Jurmain, R. Kilgore, L. & Trevathan, W.  2011. Essentials of Physical Anthropology International Edition. London: Wadworth.

Larsen, C. 1997. Bioarchaeology: Interpreting Behaviour From The Human Skeleton. Cambridge: Cambridge University Press.

Marsland, D. & Kapoor, S. 2008. Rheumatology and Orthopaedics. London: Mosby Elsevier.

Mays, S. 1999. The Archaeology of Human Bones. Glasgow: Bell & Bain Ltd.

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Dental Delights and Disability in Archaeology

26 Mar

I’ve recently had the joy of a dealing with a dental abscess affecting the left hand side of my mandible, and whilst I’m thankful for modern medicine I can only imagine the pain and frustration for pre-modern populations suffering with such an infection, especially those who didn’t have access to antibiotics and strong painkillers.  As such I haven’t posted properly for a while, and it might be a bit longer before I do.  Having had surgery to relieve the effect of the swelling and to drain the infection and remove two pesky teeth (with added complications courtesy of Fibrous Dysplasia), I’m once again learning how to chew (farewell 1st and 3rd left mandibular molars!).  It has also given me the time to think about the role of disability in the archaeological record and how it is approached by modern-day researchers.  What follows below is a very quick and brief overview of the main points of how disability has been approached in the archaeological sector and the changes therein.  Articles of interest are noted in the bibliography.

Dettwyler famously wrote a paper entitled ‘Can paleopathology provide evidence for compassion‘ (1991: 375-384, PDF embedded) that rightly questioned the interpretations of archaeologists and osteologists on the inferred aspects of care and compassion that disabled individuals from the archaeological record may or may not have received during their lifetimes.  The author cautioned that archaeologists and researchers are not ‘justified in drawing conclusions either about quality of life for disabled individuals in the past or attitudes of the rest of the community from skeletal impairment of physical impairment’ (Dettwyler 1991: 375).  This was a much-needed wake up call, and rightly raised questions in the realms of archaeology and palaopathology regarding how we viewed individuals, and how we analysed them.

The majority of disability studies before the Dettwyler (1991) article focused on disabled individuals as case studies, reported in journals and rarely integrated or investigated as part of the society or cemetery population they may belonged to.  Mays (2012) rightly investigated the impact of the relative value of individual case studies compared to quantitative and problem orientated population studies, and found that although the publishing gap had lessened between the two types, singular case studies still predominated.  Mays (2012) main contention is that individual case studies do little to further the advance of palaeopathology, something which Larsen (1997) effectively demonstrates throughout his book and review (2002), in the consideration of how palaeopathology can indicate society or cultural wide rituals, actions or lifestyles.

Since the publication of the Dettwyler paper there has been a slew of articles, journals and books dedicated to researching disability as evidenced from the skeletal and archaeological record, both from a bioarchaeological perspective and from a theory perspective (Battles 2011, Brothwell 2010, Hawkey 1998, Kleinman 1972, Vilos 2011, Wood et al. 1992).  Indeed the study of disability and the implications for affected individuals, their communities and societies, has moved on considerably since the descriptive days of Calvin Wells, especially in the consideration of the theory of ‘compassion’ as an evolutionary force in the primate family (Hublin 2009, Stewart et al. 2012), or as evidenced in other mammals (Fashing & Nyuyen 2011).

This is in accordance with the rise and debate of disability theory and studies in numerous other disciplines.  This has had real life applications in many areas of modern-day life, where multi-agented approaches to understanding,  recognising and implementing programs that are designed to raise awareness or life quality for disabled individuals.  Two prominent examples from the UK are the 2005 Disability Discrimination Act and the 2010 Equality Law where disability itself is given a legal definition, and here we come to a prominent problem in the archaeological and palaeopathological record itself.

Disability, as we would recognise it today, can mean both a physical and/or a mental impairment that can be substantial and lifelong, and it is worth noting some problems inherent in the archaeological record.  Firstly, in the archaeological record, we can only recognise physical disability when it has affected the skeletal remains of individuals, normally at a late and severe stage in the disease progression (Aufderheide & Rodriquez 1998, Waldron 2009, Wood et al. 1992).  As such, a large number of individuals with diseases or traumatic injuries that only affected the flesh will go unknown, and as such are unstudied.  Secondly, there is no universal or standard definition of disability that archaeologists and researchers use, it is solely up to the person/persons to define clearly and openly which definition they are using at the outset of their research (and there are a lot of definitions and models depending on which source you base your definition on).  Thirdly, the usage of terminology itself, such as the very word disability, can have vastly different connotations or implications for different populations and cultures (Battles 2011).

There may have been distinct differences as to who was considered disabled or not in historic and prehistoric cultures, and we should, as researchers, always be aware of observer bias ourselves (Dettwyler 1991).  As such researchers should always be clear who they are addressing, and the possible differences highlighted, where evidence is available, as to how a disabled person was treated within their culture when archaeological or cultural evidence is available.

To complicate the matter further is the ‘osteological paradox‘, as highlighted by Larsen (1997), Woods et al. (1992) and Wright & Yoder (2003) amongst others, which heavily influences the health status of skeletal remains that survive and that are then studied.  Therefore it should always be understood that no skeletal sample is entirely representative of their population, that there are many caveats (Hahn 1995, Roberts 2000).

Battles (2011) highlighted the need to move towards a more holistic approach to disability, to take advantage of different fields (including physical anthropology, sociocultural anthropology, experimental studies and archaeology itself) to understand disability at archaeological sites and affected individuals, to a model that integrates the data and insight of the various fields.  In particular Battles (2011) makes the salient point of noting the individuals  (largely females and sub-adults) that historically have been under-studied in archaeological and population analyses.

An important methodological update has been the advancement of a ‘Bioarchaeology of Care‘, as espoused by Tilley & Oxenham (2011), where a four stage assessment of an individual produces an assessment of the care needed for the disabled individual found in a Neolithic Vietnam community.  The stages are: (1) describing,  diagnosing and documenting the individual and site, (2) identify the clinical/functional impacts of disease or trauma, and determine if care was needed, (3) produce a model of care, and finally (4) interpret the implications for the individual and society, as well as possible indications for the identity and nature of both (Tilly & Oxenham 2011: 36).  It could be argued that other researchers have espoused the same sentiments (Roberts & Manchester 2010, Vilos 2011), but it is the clear initiation of the applying the model to individuals who fit the criteria that will hopefully produce further studies and elicit meaningful result which highlight this recent study as one to watch.  The Tilley & Oxenham (2011) model is particularly useful for prehistoric cases where there are no written or documentary sources.

Hawkey’s (1998) study of musculoskeletal markers (MSM’s) of a disabled individual from a New Mexico Pueblo culture highlighted the worth of applying existing osteological techniques to disabled individuals in order to assess the quality of bodily movement.  The modelling of the movement capable for this individual suggested that bodily manipulation, feeding, and the cleaning of this person was likely carried out by members of his culture (possibly family relatives, although this is conjecture) due to the severity of his disability (Hawkey 1998: 330).  Craig & Craig (2011) make extensive use of modern medical imaging to diagnosis a specific disease (fibrous dysplasia) in the case of a sub-adult from an English Anglo-Saxon site.  The striking bone expansion in the mandible is discussed within the social sphere of the community that the individual belonged.  The implications, via the the inference of position of the body within the grave, grave goods and grave location, and studies into Anglo-Saxon culture and social stratification give rise to the theory that the individual was not treated any differently due to his disability, although it is unknown if the disease led to the early demise of the individual (Craig & Craig 2011: 3).

Craig & Craig’s (2011) case study, and the above studies, highlight the use of modern medical literature and imaging technology in establishing a likely disease diagnosis, yet Brothwell (2010) rightly highlights the dangers of the differential diagnosis of diseases in skeletal remains at a macroscopic level.  Waldron’s (2009) palaeopathology handbook presents an ideal source on how to identify diseases that can lead to disability, but highlights the value of the differential diagnosis when the osteologist cannot be exactly sure of the disease.

The battery of scientific techniques used in archaeological investigations, including aDNA analysis, trace chemical analysis, and isotopic analysis amongst others, have become significantly refined within the past two decades, and are now allowing for a more nuanced understanding of individual and population dynamics (Brown & Brown 2011).  This includes the ability to analysis the movement of a person in a landscape within their lifetime (Marstellar et al. 2011), and to understand the changes in diet and the effects of diet on the body (Larsen 1997, Roberts 2000, Roberts & Manchester 2010). It also includes the ability to indicate the likely exposure of populations to various chemicals and diseases (Barnes et al. 2011), and exploration of how social structure (Bentley et al. 2012), and hence the role of the population or of the individual, changed through time.

Perhaps what the above studies cannot show, especially in prehistoric societies, are the actions of the disabled individuals themselves.  It is most likely that we will never know if they took an active interest in their society, if they took part, or how they felt as disabled individuals, or even if they saw themselves as disabled (Battles 2011, Hahn 1995).  Compassion  itself cannot be excavated (Dettwyler 1991), but with careful examination of the available evidence results can be produced that suggest that severely disabled individuals did survive past natural limitations.

The progress continually being made in the hard sciences and in the humanities continues to advance our knowledge of past populations via their skeletal remains and their cultural context.  The understanding of disability within an archaeological and osteological context provides the opportunity to investigate of how individual’s survived, and whether care was a key component (Hawkey 1998, Kleinman 1978, Tilley & Oxenham 2011).  This is a burgeoning area of bioarchological research, and when combined with a multidisciplinary approach, it opens up a wide range of interesting and diverse approaches and avenues.

Case Studies, Theories and Further Information:

Full articles are linked where possible, although a number hide behind Journal pay walls.

Aufderheide, A. C. & Roderiquez-Martin, C. 1998. The Cambridge Encyclopedia of Human Palaeopathology. Cambridge: Cambridge University Press.

Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G. 2011. Ancient Urbanization Predicts Genetic Resistance to Tuberculosis. Evolution. 65 (3): 842-848.

Battles, H. 2011. Toward Engagement: Exploring the Prospects for an Integrated Anthropology of Disability. Explorations in Anthropology. 11 (1): 107-124.

Bentley, R. A., Bickle, P., Fibiger, L., Nowell, G. M., Dale C. W., Hedges, R. E. M., Hamiliton,. J., Wahl, J., Francken, M., Grupe, G., Lenneis, E., Teschler-Nicola, M., Arbogast, R-M., Hofmann, D. & Whittle, A. 2012. Community Differentiation and Kinship Among Europe’s First Farmers. Proceedings of the National Academy of Sciences Early Edition. 1-5. (Early View).

Brothwell, D. 2010. On problems of Differential Diagnosis in Palaeopathology, as Illustrated by a Case from Prehistoric Indiana. International Journal of Osteoarchaeology. 20: 621-622.

Brown, T. & Brown, K. 2011. Biomolecular Archaeology: An Introduction. Chichester: Blackwell Publishing.

Churchill, S. E., Franciscus. R. G., McKean-Peraza, H. A., Daniel, J, A. & Warren, B. R. 2009. Shanidar 3 Neandertal Rib Puncture Wound and Palaeolithic Weaponry. Journal of Human Evolution. 57: 163-178.

Craig, E. & Craig, G. 2011. The Diagnosis and Context of a Facial Deformity from an Anglo-Saxon Cemetery at Spofforth, North Yorkshire. International Journal of Osteoarchaeology. (Early View doi: 10.1002/oa.1288).

Dettwyler, K. A. 1991. Can Palaeopathology Provide Evidence for “Compassion”? American Journal of Physical Anthropology. 84: 375-384.

Fashing, P. J. & Nguyen, N. 2011. Behaviour Towards the Dying, Diseased, or Disabled Among Animal and its Relevance to Palaeopathology.  International Journal of Palaeopathology. 1: 128-129. 

Hahn, R. A. 1995. Sickness and Healing: An Anthropological Perspective. New Haven: Yale University.

Hawkey, D. E. 1998. Disability, Compassion and the Skeletal Record: Using Musculoskeletal Stress Markers (MSM) to Construct an Osteobiography from Early New Mexico. International Journal of Osteoarchaeology. 8: 326-340.

Hublin, J. J. 2009. The Prehistory of Compassion. Proceedings of the National Academy of Sciences. 106 (16): 6429-6430.

Kleinman A. 1978. Concepts and a Model for the Compassion of Medical Systems as Cultural Systems. Soc Sci Med. 12: 85-93.

Knusel, C. J. 1999.  Orthopaedic Disability: Some Hard Evidence. Archaeological Review Cambridge. 15: 31-53.

Larsen, C. 1997. Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.

Larsen, C. S. 2002. Bioarchaeology: The Lives and Lifestyles of Past Peoples. Journal of Archaeological Research. 10 (2): 119-166.

Marstellar, S. J., Torres-Rouff, C. & Knudson, K. J. 2011. Pre-Columbian Andean Sickness Ideology and the Social Experience of Leishmaniasis: A Contextualised Analysis of Bioarchaeological and Palaeopathological Data from San Pedro de Atacama, Chile. International Journal of Palaeopathology. 1 (1): 23-34.

Mays, S. 2012. The Impact of Case Reports Relative to Other Types of Publication in Palaeopathology. International Journal of Osteoarchaeology. 22: 81-85.

Roberts, C. A. 2000. ‘Did They Take Sugar? The Use of Skeletal Evidence in the Study of Disability in Past Populations’. In Hubert, J. (ed) Madness, Disability and Social Exclusion: The Archaeology and Anthropology of Difference. London: Routledge. 46-59.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease. Stroud: The History Press.

Stewart, F.A., Piel, A.K., O’Malley, R.C., 2012. Responses of Chimpanzees to a Recently Dead Community Member at Gombe National Park, Tanzania. American Journal of Primatology. 74: 1–7.

Tilley, L. & Oxenham, M. F. 2011. Survival Against the Odds: Modelling the Social Implications of Care Provision to the Seriously Disabled. International Journal of Palaeopathology. 1 (1): 35-42.

Vilos, J. D. 2011.  Bioarchaeology of Compassion: Exploring Extreme Cases of Pathology in a Bronze Age Skeletal Population from Tell Abraq, U. A. E. Master’s Dissertation. Las Vegas: University of Nevada.

Waldron, T. 2009. Palaeopathology. Cambridge: Cambridge University Press.

Wood, J. W., Milner, G.R., Harpending H. C., & Weiss, K. M. 1992.  The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal SamplesCurrent Anthropology 33:  343-370.

Wright, L. E. & Yoder, C. J. 2003.  Recent Progress in Bioarchaeology: Approaches to the Osteological ParadoxJournal of Archaeological Research 11 (1): 43-70. (**An extensive bibliography of articles can be found in the bibliography of this article**).

Documentary on Fibrodysplasia Ossificans Progressiva

24 Nov

There was recently a documentary on Channel 4 (in Britain) that highlighted an individual with Fibrodysplasia Ossificans Progressiva (FOP), a progressive bone disease in which the bodies natural repair mechanism causes fibrous tissues (including ligaments, tendons and muscles) to become ossified when damaged or hurt.  Typically lumbered with the name Stone Man Syndrome, the genetic disease itself is thankfully very rare with a rough prevalence of around 1 in every 2 million people.  A total of 700 cases have thus far been confirmed out of presumed 2500 cases worldwide at the current time.  The disease is ultimately devastating for the individual affected as it can lead to full ossification of every joint in the body, whilst the ossification of the fibrous tissues is typically a very painful process.  A full introduction to the disease can be found here on the emedicine website.

The program, entitled ‘The Human Mannequin‘, dealt with teenager Louise Wedderburn’s attempts to break into the fashion industry, despite her having this terrible disease.  The information byline for the show asked if the ‘notoriously image conscious fashion industry (would) accept her?’.  However, as the program progressed, it was clear to see that Louise had the tenacity necessary and had started to make clear progress towards her ideal career by gaining work placements at well recognised fashion magazines, and by starting to make her name known in the industry through her fighting spirit.

This program clearly was not about the disease itself, but about one person realising their dreams despite the disease.  As such, there was minimal background information regarding the history of the disease or of the prognosis of Fibrodysplasia Ossificans Progressiva.  Instead this program helped to raise of the profile of a dynamic young individual who, despite having this disease, is determined to make the most of her life.  The viewer was allowed access into what life is like for a person suffering this disease, both for the drawbacks and the numerous hospital visits, but also for the everyday glimpses of how you can still live your life and make a positive impact.  I would wholeheartedly recommend watching the program if you have the chance.

Perhaps the most famous sufferer of FOP is a person called Harry Eastlack (1933-1973), who bequeathed his skeleton to medical science whilst he was alive in the hope that his bones may one day help future researchers uncover a cure or help ease the pain of fellow sufferers.  Dying just short of his 40th birthday through complications arising via FOP, Harry Eastlack had became entombed within his own skeleton towards the end of his life as every joint ossified and fused completely, leaving only his lips free to move.

A photo of Harry Eastlack’s back and ribcage, with evidence of excess bone growth and ossification of the muscles, tendons and ligaments (via IFOPA).

Today researchers and medical staff at the College of Physicians in Philadelphia and the Mutter Medical Museum use his skeleton to help test and compare lab results and learn and study about the effects of FOP via his remains; Harry’s skeleton is only one of the few existing skeletons in the world with FOP and provides a very important source of knowledge, both for the medical world and the general public.

There are no known instances of FOP disease in the archaeological record, likely because it is so rare and the fact that prehistoric/historic individuals would not have likely survived as long as individuals do today with the condition.  However it is worth reading up on the disease just in case, and I would, once again, recommend watching the program.  As so often in the fields of archaeology and human osteology, we only get to investigate the bones of the dead themselves, they cannot tell us directly their lives or suffering so we must, as osteoarchaeologists, beware of what the bones can tell us.

Further sites of interest:

Anatomy of Human Dissection: An Introspection

27 Sep

It was to be the last time that we saw his body on the table.  In the intervening weeks we had come to know his features with intimacy and respect.   Outside the wind had turned fierce, whilst the clouds, a deep shade of grey and pregnant with snow, streamed across the sky as winter proper closed in.  The Medical Teaching Unit had largely emptied over the past week, the last teaching week before the Christmas break.  Only the aspiring human osteologists and palaeoanthropologists now remained and filled the cavernous light blue coloured room.  With glistening scalpels and silver probes, the last examination of our beloved participant took place.  Pairs of nervous eyes and trembling hands ran through what we had been taught.   We touched and felt the cold body as we reeled off the list drilled into us by the 12 weeks of dissection classes.  Each muscle,  its attachment; insertion; action; nerve; blood supply; ligaments and tendons, were ticked off, one by one.  Each major actor in the human musculoskeletal system was to be identified and admired.  Just as in field archaeology, as in the body.  There are layers, superficial and deep, to be uncovered and appreciated, and then to be reflected back as we investigated further.

It had taken some getting used to at first, the chemical smell and the sights of the MTU.  The individuals who had donated their bodies were to be found wrapped up on their metallic trays, waiting with eternal patience in the centre of the room.  I couldn’t help but notice the sad fact of the bodies different lengths, from adult to child.  It was a hive of activity, bristling with groups of medical students crowding around different individuals on their cold slabs.  The medical students commandeered the central space every week, as they deconstructed the body to heal it.  Tucked away in the side of the main room, we learnt about the intricacies of the fleshed body; how movement is dictated by flexion and extension of passive and active striated skeletal muscle groups.  Each week we would start with a new aspect on our adopted individual and help uncover that week’s muscle group.

The first exam had been taken some 5 weeks before, and we now stared at the second, a mere day or two away.  Our focus this time was the lower half of the body, from the pelvis down to the toes.  The almost fan-like gluteal muscles provided a staunch launching pad from which to run down the thighs, past tensor fascia latae and the iliotibial band on the lateral aspect, to curve with the sartorius on the anterior aspect, as we reached and admired the complexity of the knee joint.  As we uncovered and cleaned each section free of adipose fat, we unveiled the vastus, adductors and hamstring muscle groups.  Whilst running a discussion on what constituted the delicate femoral triangle, I couldn’t help but think of my own numerous surgeries.  Of the many times I have had a scalpel part my skin on the lateral aspect of my thighs.  That scar tissue, on my body as a permanent fixation, serves as a reminder that I too have been laid on a table, ready to be examined and explored; that ultimately, there is no difference between the living and the dead- it is just a different state of being, of matter in the universe.

We had already uncovered the startlingly array and complexicity of the upper body in previous dissection sessions.  The human body, like any living creature, is a marvelous machine developed over millions of years of evolution.  Nothing is perfect however.  Homologies from a common ancestor, ‘the same organ in different animals under every variety of form and function’, are to be found throughout the animal kingdom, and the human as a part of this, has many.  They are well documented, and I shan’t digress here.  However, it is important to note the expected variation within species and between species.  The detailed analysis of fossil hominids depends on this fundamental approach, even as new batteries of investigations are used.

And now, the week before Christmas, the main hall stood empty.  No bodies lay on their metallic tables, and there was no crowd of bustling medical students hunched over, investigating and desiccating the minutiae of life.  It was as if even the bodies had gone home for the bleak mid-winter break.  As we finished testing each other on the soleus or the gastrocnemius, we carefully de-bladed the scalpels, washed all of the tools, and placed them back inside our student dissection kits for the last time.  We silently thanked the individual’s generous bodily donation, and placed the plain cloth over the body and carefully tucked it in.  As I made my way to a nearby exit, my fellow colleagues were already outside breathing the fresh cold winter air.  As I opened the exit door I was accompanied by a lonely radio playing a mournful 1950s song.  Knowing that I would not be back in this place again, I closed it and bid the room a fond farewell.

———————————————————————————————————————————–

The University of Sheffield MSc Human Osteology program is the only UK based University that offers the teaching and education of human musculoskeletal anatomy by first hand dissection.  Other UK Universities offering Osteological Masters degrees only teach musculoskeletal anatomy in the lecture theatre.  I firmly believe that my education was enhanced by this opportunity.  At all times the people who donated their bodies to the Medical Teaching Unit were respected and treated with dignity.  The staff displayed professionalism and esteem, and encouraged us all to smile and to learn about the wonders of the human body.

Related and Further Information:

  • The Chirurgeon’s Apprentice has an interesting article on vivisection in Early Modern England, and the medical advances and reactions to this method of dissection.
  •  An article in the Lancet by Lindsey Fitzharris (2012: 108-109), author of the above blog, discusses the effects of human dissection on early modern doctors and today’s medical practitioners .  
  • Guardian article citing the difficulties of obtaining skeletons for academic study, and the difficult process of donating bodies for medical and clinical science, with quotes from Dr Tim Thompson and Dr Piers D. Mitchell
  • At the Museum of London, there is a current exhibition on ‘Doctors, Dissection and Resurrection Men‘ (until April 2013) detailing the excavation of 262 burials from Royal London Hospital with extensive evidence of dissection, along with faunal remains.  The exhibition “reveals the intimate relationship between surgeons pushing forward anatomical study and the bodysnatchers who supplied them; and the shadowy practices prompted by a growing demand for corpses” (MoL 2013).