Archive | Human Evolution RSS feed for this section

Spotted: Introduction to Forensic Anthropology – Human Osteology Short Course @ University of Lincoln, 27-31 July 2020 – *Postponed to 2021*

3 Mar

*** Please note that this short course has now been postponed until 2021 due to the ongoing Covid-19 pandemic. Further information will be provided once it is available. In the meantime please keep an eye on the University of Lincoln website for updates ***

 

On the British Archaeological Jobs and Resources Facebook page recently I came across an intriguing advert for a brand new human osteology short course, which not only looks at the skeletal anatomy but also the excavation and recording methods used in forensics and archaeology to recover human remains.

Taking place over five days (27-31 July 2020), the Forensic Anthropology – Human Osteology short course takes place at the University of Lincoln and is aimed at the beginner and enthusiast level with no experience needed, though forensic and archaeology professionals will find the course useful. The hands on lecture and laboratory short course is taught by bioarchaeologist Samantha Tipper and biological anthropologist, radiographer and medical researcher Charlie Primeau.

Courses such as these are a fantastic place to learn about the skeletal anatomy and variation found within the human skeleton.  They are also a great opportunity to further your knowledge, extend your skills, or to use as a springboard into pursuing a career.  Before I undertook my own MSc in Human Osteology and Funerary Archaeology at the University of Sheffield, I participated in two short courses in human osteology and zooarchaeology (study of non-human animals within archaeology) and they helped my experience and understanding of osteological material within archaeological contexts immensely.

Check out the full Forensic Anthropology – Human Osteology University of Lincoln short course details below for more information.

Laying out a human skeletal in the anatomical position. Image credit: University of Lincoln.

Course Dates: 27 – 31 July 2020 (five days inclusive).

Fees: £400 per person (£300 for students).

Application Deadline: 20 May 2020.

How to apply: If you want to book a place, or require further information on the short course, you are advised to contact organiser Samantha Tipper via stipper@lincoln.ac.uk.

Accommodation: Not included but available on University of Lincoln campus (additional fees apply).

Please Note: Payment is due by 1 June 2020, any cancellations must be requested before 1 July 2020. Attendees must be aged over 18 years.

Poster advertising the human osteology short course taking part at the Anthropology laboratory at the University of Lincoln. Image credit: University of Lincoln.

The following information is provided by the short course website:

This five-day beginner-level introduction to human osteology is aimed at students, professionals working in archaeology, heritage or museum sectors, as well as anyone with an interest in learning about human osteology. The course will provide an introduction to human osteology and will be delivered through lectures and hands-on practical sessions.

Topics covered include:

  • The application of human osteology in an archaeological and forensic context
  • Ethical issues surrounding human remains
  • Excavation and recording methods
  • The human skeleton and basic anatomy
  • Human verses non-human skeletal remains
  • Estimation of sex and age at death
  • Determination of stature
  • Human Dentition.

A Shout Out for Other Short Courses

As ever, if you know of any other bioarchaeology, forensic anthropology, or human osteology-orientated short courses taking place in the United Kingdom, then please do feel free to leave a comment below to let me know.  Alternatively please email me at thesebonesofmine at protonmail.ch – I am always happy to highlight your course here on this blog.

Further Information

  • The University of Lincoln offer both an undergraduate BSc (Hons) and a taught postgraduate MSc in Forensic Science. Check out the University of Lincoln’s past and present forensic anthropological research, news and activities here.
  • Read Dr Charlie Primeau’s fascinating blog on her website here and Samantha Tipper’s research here.
  • The University of Sheffield also offer a three-day human osteology short course (6-8 April 2020), costing £180 full price and £120 for concessions.

Listen to Christopher Knüsel’s Talk on ‘Bioarchaeology: Achievements & Future Potentials’ (29th August 2016)

2 Sep

The Council for British Research in the Levant (CBRL) have recently uploaded a talk to their Soundcloud account by Christopher Knüsel on the subject of bioarchaeology and its aims as a multidisciplinary area of research.  The talk, titled Bioarchaeology: Achievements and Future Potentials, was presented on the 29th August 2016 and discusses just what bioarchaeology is and why it is so important.  Importantly Knüsel, a Professor of biological anthropology at the Université de Bordeaux, France, emphasizes the deep importance of interrogating the data collected from human and hominin skeletal material to investigate the context of the remains.  I’ll quote the CBRL Sound homepage here for a brief breakdown of what the talk is about:

‘Bioarchaeology is a sub-discipline at the crossroads between biological anthropology and archaeology. It developed as a result of a desire to draw on and apply techniques developed in the natural sciences, while addressing issues of general concern in the social sciences and humanities. Its inspiration, then, comes not only from biological theory, but also from those developed in subjects such as history, sociology, political science, economics, and sociocultural anthropology. It is intended to cement the bonds with these disciplines to address questions of broad interest. This presentation highlights some of the long-term themes in bioarchaeology, while also addressing some of its current concerns, and charting its future developments.’  

Listen to the invigorating hour-long talk by clicking here.

OLYMPUS DIGITAL CAMERA

A few of my favourite bioarchaeology, archaeology and history publications. Photo credit: author.

If you are interested in learning more about the history, theory and methods used within bioarchaeology, and the disciplines importance in a number of fields, then I highly recommend any of the above books.  In particular I’d say both The Archaeology of Human Bones by Simon Mays and Clark Spencer Larsen’s Bioarchaeology: Interpreting Behaviour from the Human Skeleton are great starting points.

The Trials and Tribulations of Homo floresiensis: A Quick Introduction

1 Sep

I haven’t wrote about palaeoanthropology much recently, but I have been meaning to write about Homo floresiensis for a while now.  The diminutive hominin, most likely a new Homo species although this is still debated, was discovered by chance on the Indonesian island of Flores in 2003 during the excavation of the Liang Bua cave site, which was led by the now sadly deceased New Zealand archaeologist Mike Morwood (Brown et al. 2004).  The team that excavated at Liang Bua cave found the remains for a probable 12 separate H. floresiensis individuals dating from around 95,000 years ago to around 13,000 years ago (1), making H. floresiensis one of the last hominin species to live in conjunction with our species, H. sapiens (Brown et al. 2004: 1055).  One of the most complete individuals found at the site is LB1, an adult female aged around 30 who has almost both lower limbs, upper right arm, pelvis and cranium surviving (see image below).  It is this individual that has become the holotype, or type species, for H. floresiensis and on who most of the current research has, and continues, to focuses on (Brown et al. 2004, Brown 2012, Falk et al. 2005, Henneburg et al. 2014).

The majority of this research has been focused on the skeletal remains themselves and archaeological context as attempts to extract ancient DNA (aDNA) from the remains has not been successful, likely due to the cave environment that the skeletons were excavated from and the fragmentary nature of the surviving aDNA.  Morwood’s team formally announced the details of the skeletal remains in 2004 and stated that the remains included primitive and derived features resulting from long term isolation and endemic dwarfing (Brown et al. 2004: 1055-56).  It is important to note here that up until the excavation of H. floresiensis in 2003 it was thought that only H. erectus and H. sapiens were the only Homo hominins present in Late Pleistocene Asia (Brown et al. 2004: 1056).  Later hominin finds, such as at the Denisova Cave excavations in Siberia in 2010 and the announcement of the Denisovan species, have highlighted that other unknown hominins were present in Late Pleistocene Asian contexts helping to fundamental change, and challenge, the way that we think of the evolution of our species H. sapiens (Reich et al. 2010: 1053).

LB1

The species holotype is LB1, found in 2003 in the Liang Bua cave site on Flores, Indonesia. The adult female individual dates to 18,000 years old, stood 3.5 ft tall and represents one of the most complete H. floresiensis individuals found. Notice the large dentition relative to the overall cranium size. Image is not to scale. Image credit: Jennifer Clark (Human Origins Program) and Chip Clark (Smithsonian Institution).

There are many issues surrounding the remains of the H. floresiensis hominins that serve to obstruct and help obfuscate the research that has taken place into understanding the origin and anatomy of the floresiensis hominin.  Inevitability this is ongoing as McVie (2014) highlights in a recent Guardian newspaper article.  Thus it is pertinent to highlight them here to help understand where we are at with understanding the remains of the Flores hominin.  Indeed the H. floresiensis case has all the unfortunate tropes of a spectacular palaeoanthropological find (2) (the unexpectedness of the finds, the bickering academics, mishandling of remains etc.) and continues to show no sign of abating.

As is indicative above, H. floresiensis is a unique and interesting recent hominin ancestor, even more so as the only physical remains of the species are the 12 individuals found and excavated at the Liang Bua cave site in Indonesia.  It is the opposite to our modern notion of the (much maligned) Neandertal, being gracile, petite and small in statue and body.  Perhaps inevitably it was labelled a ‘hobbit’ species (although this word has led to problems with the Tolkein estate).  The type specimen LB1 was quickly repudiated as a H. sapiens individual with a pathology by several researchers and others who have, at various times, stated that all the H. floresiensis individuals, and in particular LB1 and partial skeleton LB6, display attributes varying from myxoedematous endemic cretinism (Oxnard et al. 2010, Brown 2012), Laron Syndrome (Falk et al. 2009, see Hawks 2007), or Down Syndrome (Benton 2014, Henneburg et al. 2014).  There have also comparisons even being made of the singularity of the Late Pleistocene epoch species being compared to the K/T impact boundary event 65 million years ago (Eckhardt et al. 2014), which frankly is a little mystifying.

McVie (2014) has highlighted a potential conflict of interest with regards to both the Eckhardt et al. (2014) and Henneburg et al. (2014) publications, as there is a suggestion that Henneburg (who helped author both articles) picked his reviewers to help favour his research team’s hypothesis and investigation.  The journal that both of the articles were recently published in, Proceedings of the National Academy of Sciences of the United States of America (or PNAS), does not operate a peer review policy in the recognised sense, as most of the other respected journals use, but uses its own specific and trusted system (see here).  Perhaps most surprising is the fact that this team have now published 3 separate papers each focusing on different pathological conditions each time in their continued belief that the H. floresiensis remains are probable members of H. sapiens and represent pathological processes (Henneburg et al. 2014).

Regardless of the ongoing new-species-or-not debate there must be further investigation of the context of the remains.  As Hawks (2007) highlights it is the exact nature of where H. floresiensis fits in both the evolutionary tree and the archaeological context of Asia that remains to be thoroughly demonstrated.  This can only be determined by further finds with consolidated archaeological contexts over an extensive period of time and, with luck, further specimens of this hopeful new species.  The specimens of this population found on Flores, Indonesia, are both tantalising for the human evolution implications and frustrating for their apparent uniqueness in location and time.  As such the Flores H. floresiensis remains are surely one of the most interesting and divisive points of interest in the palaeoanthropological world today.

Notes

(1). A new analysis of the chosen radiocarbon samples and the stratigraphy of the cave site by Sutikna et al. (2016) has led to a serious revision in the chronology of the Homo floresiensis fossils.  It seems that all fossil evidence of H. floresiensis is older than 60,000 years, which is a major revision and leaves a lot of questions regarding the contextual material culture and faunal remains and their association with the fossil hominins.  John Hawks has covered the implications that this new article by Sutikna et al. has in a detailed and interesting read, check it out here.

(2). An excellent counter example of this is the University of the Witwatersrand and National Geographic funded Rising Star project currently underway in South Africa, where the remains of a spectacular palaeoanthropological site (with the evidence of numerous hominin individuals of some importance) has been well and truly open to researchers and members of the public to take part in and to learn about.  This has included an extensive and on-going social media presence and an open call for researchers to join collaborative workshops to study the remains.

Lean More

  • The Smithsonian Institute has a handy guide in introducing the hominins of human evolution at the Human Origins website and, as a part of this, there is a nice guide to H. floresiensis.
  •  For a full round of the issues involved in the research of H. floresiensis and the LB1 type fossil, I highly recommend reading the Wikipedia entry on the species which covers all pertinent academic articles published.

Bibliography

Benton, A. 2014. Was the “Hobbit” a Human with Downs Syndrome? Probably Not. EvoAnth. Accessed 19/08/14. (Open Access).

Brown, P. 2012. LB1 and LB6 Homo floresiensis are Not Modern Human (Homo sapiens) Cretins. Journal of Human Evolution. 62 (2): 201-224.

Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., Jatmiko, Wayhu Saptomo, E. & Rokus Awe Due. 2004. A New Small-Bodied Hominin from the Late Pleistocene of Flores, IndonesiaNature. 431 (7012): 1055–1061.

Eckhardt, R. B., Henneburg, M., Weller, A. S. & Hsu, K. J. 2014. Rare Events in Earth History Include the LB1 Human Skeleton from Flores, Indonesia, as a Developmental Singularity, not a Unique Taxon. PNAS. 111 (33): 11961-11966. (Open Access).

Falk, D., Hildebot, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., Jatmiko, E. W. S., Brunsden, B. & Prior, F. 2005. The Brain of LB1, Homo floresiensis. Science. 308 (5719): 242-245.

Falk, D., Hildebolt, C., Smith, K., Jungers, W., Larson, S., Morwood, M., Sutikna, T., Jatmiko, E. W. S. & Prior, S. 2009. The Type Specimen (LB1) of Homo floresiensis Did Hot Have Laron Syndrome. American Journal of Physical Anthropology. 140 (1): 52-63.

Hawks, J. 2007. Another Diagnosis for a Hobbit. John Hawk’s Weblog. Accessed 24/08/14. (Open Access).

Henneberg, M., Eckhardt, R. B., Chavanaves, S. & Hsu, K. J. 2014. Evolved Developmental Homeostasis Disturbed in LB1 from Flores, Indonesia, Denotes Down Syndrome and Not Diagnostic Traits of the Invalid Species Homo floresiensis. PNAS. Early View: 1-6. (Open Access).

McKie, R. 2014. Homo floresiensis: Scientists Clash Over Claims ‘Hobbit Man’ was Modern Human with Downs Syndrome. The Guardian. Accessed 19/08/14.

Oxnard, C., Obendorf, P. J. & Kefford, B. J. 2010. Post-Cranial Skeletons of Hypothyroid Cretins Show a Similar Anatomical Mosaic as Homo floresiensis. PLoS ONE. 5 (9): 1-11. (Open Access).

Reich, D., Green, R. E., Kircher, M., Krause, J. Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W. & Stenzel, U. et al. 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature. 468 (7327): 1053–1060. (Open Access).

Sutikna, T., Tocheri, M. W., Morwood, M. J., Saptomo, E. W., Awe, R. D., Wasisto, S. … & Storey, M. 2016. Revised Stratigraphy and Chronology for Homo floresiensis at Liang Bua in Indonesia. Nature. In Press. doi:10.1038/nature17179.

Palaeo Updates: Call for Palaeoanthropologists to Study Rising Star Hominin Remains and Start of John Hawks Human Evolution MOOC

22 Jan

Another quick post here but one that highlights a project that is pretty impressive in its implications for palaeoanthropology.  Also noted here is the start of a MOOC (Massively open online course) on human evolution that may interest the readers of this blog.

The Rising Star Expedition in South Africa has uncovered around 1200 skeletal elements from around 12 individual hominins in the first season of excavation, an unparalleled find in the excavation of palaeoanthropological sites.  Now the project is advertising openly for early career scientists to examine and describe the skeletal remains found in the cave (my favourite quote: “Palaeoheaven has arrived, it’s just solid fossils”).  This is a unique opportunity in the field of paelaeoanthropology.  Typically fossil hominin sites are kept secret with only a lucky few allowed access to prepare, study and describe the fossils once they have been carefully excavated on site and taken to a palaeo laboratory to be looked at in more detail.  This is usually a process that can take years of careful work by a small team.

But the Rising Star Expedition has been different from the very beginning, with key members of the team tweeting and blogging every incredible scene of the South African cave site and openly advertising for participants.  Now the team have advertised for early career scientists to apply for the chance to study the hominin fossils.  As stated on John Hawks blog entry on the advertisement, the Rising Star team want to recruit a large group of scientists to come together for a five-week long workshop in May/June of this year to study the remains and produce the first high quality and high impact research papers on this batch of fossil hominins.

Here is Rising Star director Lee Berger’s open invitation to study the hominin remains gathered from the Rising Star Expedition project in South Africa:

risingstarr2014

The announcement by Lee Berger, professor at the university of the Witwatersrand in South Africa and describer of Australopithecus sediba, found at the Malapa site.

Graduate students who have finished their data collection, and have the support of their supervisors, will also be considered for the opportunity.  As John Hawks states in his blog post the applicant for the workshop should be very clear in stating their experience and the datasets that they can bring to the project, be clear about your own skills, knowledge and value and do not be afraid to apply.  This is a fantastic opportunity to be involved in the study of human evolution, at the very cutting edge of the research.  I wish all the applicants the best of luck and I look forward to the dissemination of the research itself.

In other news today marks the beginning of the 8 week free MOOC course on Human Evolution: Past and Future produced by the aforementioned palaeoanthropologist John Hawks.  The MOOC, provided by Coursera, takes a in-depth look at human evolution detailing not just the complexity of the fossil record but also of the genetic record.  The course includes all the exciting news from the Rising Star Expedition and exciting footage and interviews with palaeoanthropologists at sites from around the world (including the Dmanisi site in Georgia, Malapa in South Africa and others).

I am particularly looking forward to the discussion of human evolution within the past 10,000 years and the stunning advancements made with extracting ancient DNA from fossil hominins.  I joined this course a few months ago when I first mentioned the course on this blog but you can still join up now.  Just remember that the course is split up into weekly topics so you may not want to miss one.  I have so far watched the majority of the interesting and well presented videos for the first week, the focus of which is our place among the primates.  I cannot wait to join in and participate in the course fully, hope to see you there!

Find Out More

D4500: The 5th Dmanisi Skull

22 Oct

A paper has been by published by Lordkipanidze et al. (2013) in the journal Science which highlights the unique fossil finds at the Dmanisi palaeoanthropological site, in Georgia, of the cranial and post-cranial remains of 5 Homo erectus individuals.  In particular the paper discusses the morphological aspects of the fifth Dmanisi skull, D4500 and associated mandible D2600, as a remarkably well preserved find.  Discovered during field work at Dmanisi in 2005, D4500 and D2600 represents one of the best preserved and complete adult skulls of Early Pleistocene Homo fossils so far discovered and described (Lordkipanidze et al. 2013: 326).

The paper in question debates the morphological variation between the cranial remains of the five Homo erectus individuals at Dmanisi, suggesting that there is greater variation in the Homo genus than is typically given credit for.  The paper compares the five Dmanisi crania and their morphological variations between the individuals to early and later Homo species hominins (including early African Homo species and Homo neaderthalensis), modern Homo sapiens and extant apes (including Pan troglodytes).  The conclusions of the article suggest that there is wide variation within the early Homo palaeodeme of morphological variation, much more than has been noted or given credit for with perhaps too many species being named and described as individual species in the early Homo fossil record.  Lordkipanidze et al (2013:330) argue that the Dmanisi collection could represent evidence of the single lineage hypothesis for early Homo.  Of course this is a contentious issues and further research is needed, but this is exciting nonetheless.

There has been numerous online blog entries debating the article and its implication for the evolution of the Homo genus.  To my mind the articles linked to below perhaps sum up the best reactions and thoughts to the article, although I look forward to further peer-reviewed research being carried out.  Outlining the main issues from the article, and the evolutionary mechanism behind the variations present in the Homo genus, is Weiss’s article over at the The Mermaid’s Tale which is informative and exciting.  He also discusses the background to the one species hypothesis within Homo which Lordkipanidze et al. (2013) imply could be a possibility as a result of their study of D4500.  They also suggest it as a mechanism for phylogenetic continuity across continents for early Homo.  John Hawks presents critical comments on the article and evocatively describes just how well D4500 has survived and how beautiful and complete a specimen the individual actually is.  In particular Hawks offers his own interesting comments on early Homo evolution and the importance of understanding the many facets of evolution that are at work, including the genetic differences and how modern populations of Homo sapiens often provide poor comparative models for ancient Homo species.  At A. P. Van Arsdale’s blog there is a nice breakdown of the article itself, including just why the five crania at Dmanisi are so important and just what their discovery may mean for interpreting the hominin fossil record.

Now to end this brief blog post I think it is only right that I post a picture of the articulated skull of D4500 himself*.  It is a beautifully preserved specimen and one worth taking the time to ponder over.

dmanisi skull 5

The articulated individual known as D4500 (cranium) and D2600 (mandible) exhibiting a small braincase with a large prognathic face, found at the Georgian site of Dmanisi in 2005.  The skull also boasts of one of the best preserved basicranial of any Homo erectus known (Hawks 2013) although the dentition displays that most of the teeth were worn past their crowns. Source: Lordkipanidze et al. (2013: 327).

*It is likely that the individual is a male, but expected a flood of research to take place in the next few years on the Dmanisi individuals and their context within human evolution.

Further Information

  • A full list of scientific publications from the Dmanisi palaeoanthropological site can be found here on the official website (though I am unsure how often the site is updated).  The website has detailed information on the formation and geology of the site, including the hominins and the different species of fauna that have been found, plus you can still get a place to dig at the actual site!
  • Check out The Human Story’s take on a new 2014 article suggesting that there could possibly be two hominin lineages suggested at the Dmanisi site.

Bibliography:

Hawks, J. 2013. The New Skull from Dmanisi. John Hawks Weblog. 18/10/2013.

Lordkipanidze, D., Ponce de León, M. S., Margvelashvili, A., Rak, Y., Rightmire, G. P., Vekua, A. & Zollikofer, C. P. E. 2013. A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo. Science.  342 (6156): 326-331. (Full article here, email if this doesn’t work).

Van Arsdale, A. P. 2013. The New (Wonderfu) Dmanisi Skull. The Pleistocene Scene-  A.P. Van Arsdale Blog. 17/10/2013.

Weiss, K. 2013.  How Many ‘Human’ Species are there? Is it even a Real Question?  Why does Anybody Care?  The Dmanisi SkullsThe Mermaid’s Tale.  21/10/2013.

Anatomically Modern Humans: A Brief Introduction

22 Apr

The imperative of  the human species to ‘Know Thyself‘ has developed into a rapidly expanding field in palaeoanthropology.  The exploration of our species, Homo sapiens, is a particularly active field which utilizes multi-disciplinary approaches to untangle the evolutionary threads of our beginning.  The following essay introduces concepts and approaches used in this field, whilst raising current research issues.

——~…~——

“For a species that is both narcissistic and inquisitive, Homo sapiens has so far done a remarkably poor job of defining itself as a morphological entity”, Tattersall and Schwartz (2008: 49).

Thus starts the opening sentence to Tattersall and Schwartz’s 2008 article on the problems of clarifying the morphological distinctiveness of anatomically modern humans (AMH or the species Homo sapiens).  It is perhaps applicable not just to the morphological characteristics but also the fossil record and origins of AMH themselves (Pearson 2008: 38).  This paper, then, will discuss the principles behind the definitions and evolution of AMH in context with reference to its behaviour and morphological traits.  In turn, the dominant models of the origin and subsequent dispersion of AMH will be discussed, with reference to where Homo sapiens ‘fit’ in the palaeoanthropological record.

A wealth of new genetic research data and fossil finds has considerably opened up the treasure chest of hominin information, which is having a considerable impact on our understanding of the H. sapiens place in the evolutionary records (Bowden et al. 2012, Curnoe et al. 2012, Krause et al. 2010, Prat et al. 2011, Wood 2005: 42).  It is directly as a result of how the reporting of evolutionary science has changed in the past few decades (McEwan 2012), and how technological approaches have uncovered so much genetic data in reconstructing fossil record relationships (Jurmain et al. 2011: 270), that the definition of AMH is not so easy.  This paper will conclude with a talk on how the biocultural evolution of H. sapiens is now impacting both our environment and localised populations in certain contexts (Le Fanu 2009, Hawks et al. 2007, Jurmain et al. 2011).

It is important to note that H. sapiens are the last species of the genus Homo, with the first species tentatively dated in Africa to nearly 2.5 million YA (years ago), which led to the first dispersal of hominins (largely H. erectus) from Africa around 1.8 YA (Jurmain et a.l 2011: 240); AMH dispersal occurred much later.  It was once thought that AMH were defined by modern anatomy and behaviour at the junction of the Upper Palaeolithic around 40,000 YA (Nowell 2010: 438), however, recent palaeoanthropological finds and research have discovered a distinct ‘decoupling’ between early AMH anatomy and later symbolic/modern behaviour, with anatomically similar traits of AMH in fossils pinpointed to east and south Africa to around 200,000 YA (Rightmire 2008: 8, Wood 2005).  However there are problems concurrent with the dating of the hominin fossil record, as Millard (2008: 870) concludes that ‘the dating evidence for many key fossils is poor’.

Typically there are a number of assigned morphological features that mark out Homo sapiens compared to other species in the Homo genus (Table 1).  As Tattersall and Schwartz (2008: 51) note, however impressive the suite of features ‘not all of them are expressed with equal emphasis in all living humans’.  When this is combined with the fossil record of AMH, with individuals often taken as examples for their own long lost skeletal population and the problems inherent in the preservation of skeletal elements (geological pressure, scavenging etc), we should rightly be wary of definitively assigning a species name before comparison with relative contextual remains, stratigraphic layers and other similar period sites (Millard 2008, Pettitt 2005).

General Characteristic Morphological features of AMH

Cranial

  • Cranial capacity in excess 1350cc (variable).
  • Distinct chin (inverted T).
  • Relatively veretical frontal bone
  • Relatvely flat non-projecting face.
  • Brow ridge expressed more clearly in males.
  • Round occipital region.
  • Small incisor teeth.

Post Cranial

  • Narrow thorax.
  • Small and narrow pelvis.
  • Straight limb bones.
  • Typically less ‘robust’, more gracile, then recent ancestors.

Table 1. General morphology for Homo sapiens (Pettitt 2005: 132, Tattersall and Schwartz 2008: 51, Wood 2005: 110). NB see also Pearson’s Table 2 (2008: 39).

Using a cladistics framework, Pearson (2008: 38) highlighted the fact that there are specific difficulties in using statistical measurements of metrical and discrete measurements as having been conceptualised as derived features in AMH crania, with comparison to Neandertal and H. erectus crania.  However there are further problems when trying to establish if the earliest H. sapiens African fossils of Omo Kibish, the Herto crania, or Near Eastern Skhul and Qafzeh fossils fit within the 95% rate of modern features, with results not even reaching the 75% fit of the modern features for AMH (Pearson 2008: 39).  In part this is due to fossils, such as the Herto crania, which are used as the mean of that particular population, which ultimately ‘conflates individual, within-population variation and between-population variation’ (Jurmain et al. 2011, Pearson 2008: 39).  Other problems of quantifying such long chronological morphological differences include the lack of various populations of modern (Australian aboriginals, for example) and certain prehistoric peoples being outside of the 95% confidence to fit the given morphological concept of AMH.  Clearly there needs to be a control on the temporal/geographic population of the AMH under consideration in such studies, when carrying out both the statistical analysis with other fossil hominins and when taking the defining measurements.

Pettitt (2005: 132-137) argues that H. sapiens should be classed into three arbitrary chronological groups of morphological continuity: 1) those of the earliest H. Sapiens, including material from Bodo (Ethopia), Broken Hill (Zambia) and Elandfontein (South Africa) amongst others; 2) Transitional (or archaic) H. sapiens including Herto, Omo Kibish 1 and 2 (Ethiopia), Florisbad (South Africa) and Jebel Irhoud (Morocco); 3) finally AMH including Makapansgat, Border Cave and Equus Cave (South Africa), Taramsa (Egypt), and Dar-es-Soltan (Morocco) examples (see Table 2 below for dates).  This ordering of morphological continuity defines AMH through the evolution of H. sapien traits with retention of H. ergaster traits (earliest), whilst the AMH group compromise clear AMH dating to less than 125,000 YA (Pettitt 2005: 132).  As Pearson (2008: 44) suggests, ‘the process of becoming modern likely occurred as a series of steps, regardless of whether one considers these different steps to be different taxa in a bushy phylogeny or merely different grades in a single evolving lineage’. Pearson (2008: 44) goes on to say that the ‘evolution of modern man should be viewed as a process rather than an event involving rapid morphological change due to drift during population bottlenecks and selection for new advantageous traits or genes, or a combination of the two’, rather than a singular smooth process.  Therefore we should be wary of relying purely on the often sparse fossil record.  Regardless, it is widely recognised that H. Sapiens are a probably daughter species of H. erectus (i.e. as a result of a speciation occurrence) which spread across Africa and into Western Eurasia at the beginning of,  or just before, the Middle Pleistocene (Jurmain et al. 2011, Rightmire 2008: 8).

Recent research has also led to five majority agreements in regards to the tenets of AMH behaviour (Table 2; Nowell 2010: 447). Wood (2005: 109) makes the salient point that early eurocentrism in the search for AMH behavioural origins clouded certain judgements, such as focusing on Western Europe to the detriment of African archaeological sites.

Points of Consensus on Modern Behaviour

  • The relationship between modern anatomy and modern behaviour is more complex than once thought.
  • Modern behaviour has symbolic thoughts at its core.
  •  Archaeological record of the African Middle Stone Age has rendered invalid the idea of a ‘human revolution’ occurring for the first time in the Upper Palaeolithic of Western Europe.
  • Later Neandertal sites have demonstrated modern behaviour to either some form or some degree, such as personal adornment or symbolic behaviour.
  • The triad of social, cultural and demographic factors are key in understanding variability and patterning in the archaeology record.

Table 2. Agreed points in visioning the concept of modern behaviour (Balter 2011: 21, Nowell 2010: 447, Pettitt 2005, Zilhao 2006; 2010: 1025).

Research (Jurmain et al 2011, Prat et al 2012) has also highlighted symbolic  behaviour in a number of early H. Sapiens sites throughout Africa and the Near East; Balter (2011: 21) highlights Aterian sites in North Africa where various personal and possible symbolic artefacts have been found, whilst Blombos Cave in South Africa (77,000 YA), and Katanda in the DR of Congo (80,000 YA), have some of the earliest symbolic artefacts recovered including incised ochre, worked bone and beads; almost a full 45,000 years before any such artefacts appear in the European record (Jurmain et al. 2011: 298-299).   Mellars (2006: 9383) proposes a model that indicates climatic, environmental and cultural changes around 80,000 to 60,000 YA as major causative agents of cognitive change alongside population pressures in the dispersal of African H. Sapiens.  However Nowell (2010: 441) states that the gradual emergence of behaviours as a mosaic of features, and not as a single revolutionary package, should be considered within the archaeological record, whilst defining that for the majority of researcher’s symbolic language and codified social relationships define modern behaviour.  Mosaic features in fossil hominids have been noted in recent discoveries of the Australopithecus sediba specimen, highlighting a mix of Australopithecus and Homo anatomical features (Wong 2012: 25).

The origins of AMH living outside of Africa have led to the formation of two major competing models in palaeoanthropolog: the multi-regional continuity hypothesis that proposes already living populations of hominins and local populations in Asia, Europe and Africa continued their ‘indigenous evolutionary development from pre-modern Middle Pleistocene forms to anatomically modern human’ (Jurmain et al. 2011: 281), whilst the complete replacement (or out of Africa) hypothesis  proposes that AMH arose in Africa 200,000 YA to completely replace those in Europe and Asia (Table 3; Jurmain et al. 2011: 279).  Critical to the multi-regional hypothesis are the tenets that i) a level of gene flow between geographically separated populations prevented speciation, ii) all living humans derive largely from the species H. erectus, iii) natural selection in regional populations is responsible for the regional variants found in extant populations, and finally, iv) that the emergence of H. sapiens was not restricted to one area per se but was a phenomenon that occurred throughout the geographic range where ‘humans lived’ (Johanson 2001: 1).

aaaaaaaaaaawawawawawawa

Table 3. Timeline of major H. sapiens discoveries, question marks denote tentative dates (Jurmain et al. 2011: 413) (Click to enlarge).

Critical to the complete replacement theory are that i) H. sapiens arose in one place, highly likely to be East/South Africa, ii) H. sapiens ultimately migrated out of Africa, and replaced all human populations without interbreeding, and that iii) modern human variation is a relatively recent phenomenon (Johanson 2001: 1).

Although not all factors of the multiregional hypothesis cannot be falsified, it seems prevalent that H. sapiens originated in Eastern Africa (with Ethiopia so far providing the most stable dated site), and dispersed to Europe and Asia from 65,000 YA onwards in various waves (Table 2; Jurmain et al. 2011: 282, Mellars 2006: 9381).    The two most securely dated sites in Europe for AMH are Pecstera Cu Oase in Romania at 42,000 YA and Buran Kaya III in the Crimea, Ukraine at 31,900 YA (Hoffecker 2009: 16040, Prat et al. 2011).  Unsurprisingly, Hoffecker (2009: 16040) notes that the issue of the mechanism of transition is a ‘controversial topic in palaeoanthropology’.  Arguments have been made that AMH crossed into Eurasia via a Levantine corridor, with the earliest AMH dates from Skhul and Qafzeh in Israel at around 120,000 to 100,000 YA (Wood 2005: 98), whilst recent work in North African Aterian populations from around the same period are pointed out as being possible ancestors to at least some of the H. sapiens who left Africa during this period (Balter 2011: 23).

The palaeoanthropological evidence suggests that they, the Aterians, possessed the right symbolic behaviour, anatomy and favourable climatic conditions to be at least a contender for contributing to one of the waves of H. sapiens leaving (Balter 2011: 22-23).  There are a variety of sites across Europe after 40,000 YA that show a variety of evidence for AMH presence, including the triad of modern human behaviour with symbolic artefacts and modern skeletal morphology.  However, we should not forget that Europe was already populated with the H. Neandertalensis species prior, and co-existed with H. sapiens for approximately 10,000 years or so (Hoffecker 2009: 16040, Wood 2005: 110).  This subject will be tackled shortly.

The most secured dates found in Asia are from areas such as the Sahul region (conjoined landmass of Australia, Papua New Guinea and Tasmania), where it is possible AMH occupied various areas (Wood 2005: 111-112).  It must be remembered that while the ‘dwarf’ species H. floresiensis survived up until 18,000 YA on the island of Flores with temporal overlap between themselves and H. sapiens, it seems unlikely there was regional overlap from the archaeological evidence (Wood 2005: 111).  Curnoe et a.l (2012: 1) note that the AMH fossil record for East Asia is, at this time, poorly recorded owing to a lack of detailed description, rigorous taxonomy classification and a distinct lack of accurately dated fossils.  However there are a few key sites: Liujiang in Southern China has produced a skeleton which, although it lacks exact stratigraphic position, has been dated to an estimated broad range from 153-30,000 YA, whilst the Niah Cave child in East Malaysia has been dated to 45-39,000 YA for the cranium from a recent field and lab program (Curnoe et al. 2012: 2).  Tianyuan cave, just south of the Zhoukoudian cave, has fragmentary evidence of an AMH crania and teeth which are dated to 40,000 YA, with a possible mix of archaic and modern features; the American and Chinese team who excavated it have suggested it is evidence of interbreeding in China with resident archaic populations, but suggest an African origin for the AMH itself (Jurmain et al. 2011: 287).

The above examples highlight problems in understanding the definition of AMH, both anatomically and behaviourally.  With the advent of dispersals from Africa AMH interacted with other hominids, prominent of which are the Neandertals in Eurasia and the elusive Denisovans in Siberia (Krause et al. 2010, Hubin 2009, Noonan 2010, Zilhao 2006).  Genetic evidence is unravelling what it is to be an AMH (Hawks et al. 2007), and there is evidence to suggest that Neandertals contributed up to 4% of non-African modern human DNA via gene flow (Green et al. 2010: 711, Reich et al. 2010: 1057).

Roughly one third of Neandertal mtDNA genetic diversity, dating from 70,000 to 38,000 YA, is comparable to contemporary human populations (Briggs et al. 2009:  319), although Noonan (2010: 550) and Herrera et al. (2009: 253) raise the flag of caution as the majority of Neandertal remains were not collected with their regard to DNA investigation, whilst modern DNA contamination, despite the safeguards, is still prevalent.  Briggs et al. (2009: 321) postulate that low mtDNA diversity throughout much of the Neandertal lineage may indicate a low effective population size, although it could be reflective of AMH direct/indirect  influences as they spread from Africa (interbreeding or out competing for example).  Herrera et al. (2009: 253) note that there are difficulties such as identifying haplotypes indicative of interbreeding.  Nonetheless, as Zilhao et al. (2010: 1027) points out that a Mid-Palaeolithic Iberian Neandertal sites shows distinct features associated with AMH including symbolic behaviour, with ochre and shells displaying evidence of body paint, and organisation skills, which that studies believes is the outcome of demographic pressure, technology and ‘social complexification’ within the Neandertal species itself (Roebroeks et al. 2012: 2).

Figure 1. Phylogenetic tree of complete mtDNA rooted with chimpanzee and bonobo mtDNA, showing geographic origin of mtDNA samples (Krause et al. 2010: 896) (Click to enlarge).

Figure 1. Phylogenetic tree of complete mtDNA rooted with chimpanzee and bonobo mtDNA, showing geographic origin of mtDNA samples (Krause et al. 2010: 896) (Click to enlarge).

Meanwhile Krause et al. (2010: 896) provide evidence that the Denisovans split before Neandertal and AMH at around 1 million YA, whilst Neandertals and H. sapiens ancestors split around 690,000 to 550,000 YA (Jurmain et al. 2011: 270).  Pairwise nucleotide differences indicate that Neandertals differ from modern humans at around 202 nucleotide positions whilst the Denisovan individual differs at 385 positions (Krause et al. 2010: 895), which alongside the phylogenetic evidence (Figure 1), supports a deeper divergence of the Denisovan hominin than between the closer related H. sapiens and Neandertal species.

There is the distinct possibility of admixture; this is reinforced by the apparent coexistence of the surrounding area by Neandertals, AMH and Denisovans in the Altai region at roughly the same time periods, and by the fact that Denisova populations contributed roughly 4-6% present day DNA in AMH Melanesian populations; this suggests they interacted with Melanesian ancestors, but probably not in the Siberia region (Krause et al. 2010: 895, Reich et al. 2010: 1053).  The lack of complete remains and its physically limited location from this suspected new species at Denisova Cave limit our knowledge but tests are continuing.  If this hominin, as hypothesised, had a wide geographical range (Reich et al. 2010: 1059), the question must be asked why we haven’t noticed it before?  Interestingly Abi-Rached et al. (2011: 94) highlight that the fact that as the AMH Eurasian populations mixed with archaic hominids, adaptive introgression of vital immune system components (Human Leukocytes Antigen class 1) helped to provide a mechanism for rapid evolution.  The adapted introgression of the genes now represent more than half of the HLA alleles in modern Eurasians, and were later introduced into African populations (Abi-Rached et al. 2011: 89).  Therefore the definition of AMH must include evidence of interbreeding to some degree.  Future genomic studies in other archaic hominins should provide more information relating to the relationships between species; however it seems clear that gene flow was relatively common in the Upper Pleistocene (Reich et al. 2010: 1059).

Increased AMH demographic growth and geographic spread dated from 80,000 YA to the present, has led to rapid genetic evolutionary selective pressures on features including ‘skin pigmentation, adaptation to cold and diet’ amongst others (Hawks et al. 2007: 20756).  Some of the most dramatic have been associated with the uptake of agriculture during the Neolithic period, both in terms of our ability in coping with disease and changes from interaction via population density (Barnes et al. 2011: 848).  This is partly the result of cultural and ecological reasons (i.e. a biocultural pathway), and Hawks et al. (2007: 20756-20757) remark that in their study it was noted ‘new adaptive alleles continued to reflect demographic growth, (that) the Neolithic and later periods would have experienced a rate of adaptive evolution >100 times higher than characterised most of human evolution’.

Two examples help highlight the effects of biocultural change in modern population: coevolution of humans and cattle since the Neolithic has resulted in distinct populations of modern humans becoming lactose persistence, such as Europeans, whilst other populations, such as African and Asian adults, are largely lactose intolerant (Jurmain et al. 2011: 313).  This is through active selection of breeding cattle which ‘inadvertently selected for the gene that produces lactose persistence in themselves’ (Jurmain et al. 2011: 313); this example shows the geographical distribution of lactose persistence is often related to a history of cultural dependency on fresh milk products.  On the other hand, modern population pressures include the admixture of populations who have had the pressures of urbanisation, agriculture and gene selection for disease loading (such as Tuberculosis) who then interact with indigenous populations, such as Torres Strait Islanders and Papua New Guinea populations, who are not predisposed to deal with TB because of their lack of long term cattle coevolution (Barnes et al. 2011).  The importance is recognising that there is great variation at an environmental genetic level in modern AMH, and this is highly likely to be the case during the long and concurrent evolution of AMH (Jurmain et al. 2011).

In conclusion the definition of AMH comes to thus; either a strict definition of AMH present at around 40-35,000 YA onwards, with the full suite of the triad of anatomically modern skeletal elements, modern behavioural & cognitive functions, and similar genetics to today’s worldwide population (Tattersall & Schwartz 2008), or we can take the view that H. sapiens evolved with a mosaic of features that they themselves appeared at different times during the evolution of AMH (Jurmain et al. 2011, Pettitt 2005).  It is this author’s belief that the origin of H. sapiens species lies at the Omo Kibish site in Eastern Africa as the earliest evidence so far, and the definition of AMH must be taken with accord of the fossil record (Jurmain et al. 2011).  Throughout this paper, a long chronology has been presented and discussed of H. sapiens in the context of human evolution, and consideration has been given to the relatively modern genetic changes in modern human populations (Hawks et al. 2007).  This view belies the complexity of defining AMH, especially as new hominins are found (Krause et al. 2010, Reich et al. 2010, Wong 2012), as the consideration of the context is paramount.  There is inherent variation in the record, as evidenced between the distinct morphological variation between Omo 1 and Omo 2 fossils, leading up to the palaeogenetic and modern genetic variation and morphological in populations from inside and outside Africa (Briggs et al. 2009, Hawks et al. 2007, Harvati et al. 2012).  In comparison, the origin of the Homo genus is still in dispute (Wong 2012: 24) and the chimpanzee fossil record is distinctly lacking (Wood 2005: 69-70).  Only recently has SNP genotyping revealed the extent of Pan troglodytes ellioti as a genetically distinct species (Bowden et al. 2012: 1).  The importance of this is that we should seek to place the well discussed H. sapiens within a larger framework of where hominins (both extant and extinct) diverged, interacted and evolved (see discussion- Patterson et al. 2006: 1106, Wakeley 2008).  The definition of AMH is therefore but one fragment of our long evolutionary history.

Further Sources:

Bibliography:

Abi-Rached, L.,  Jobin, M. J., Kulkarni, S., McWhinnie, A., Dalva, K., Gragert, L. Babrzadeh, F., Gharizadeh, B., Luo, M., Plummer, F. A., Kimani, J., Carrington, F., Middleton, D., Rajalingam, R., Beksac, M., Marsh, S. G. E., Maiers, M., Guethlein, L. A., Tavoularis, S., Little, A., Green, R. E., Norman, P. J., & Parham, P. 2011. The Shaping of Modern Human Immune Systems by Multiregional Admixture with Archaic Humans. Science. 334 (6052): 89-94.

Adler, D.S. et al., 2008. Dating the Demise: Neanderthal Extinction and the Establishment of Modern Humans in the Southern Caucasus. Journal of Human Evolution. 55: 817–833.

Balter, M. 2011. Was North Africa the Launch Pad for Modern Human Migrations?. Science. 331: 20-23.

Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G. 2011. Ancient Urbanization Predicts Genetic Resistence to Tuberculosis. Evolution. 65 (3): 842-848.

Bowden, R., Macfie, T. S., Myers, S., Hellenthal, G., Nerrienet, E. et al. 2012. Genomic Tools for Evolution and Conservation in the Chimpanzee: Pan Troglodytes Ellioti is a Genetically Distinct Population. PLoS Genet. 8 (3): 1-10. e1002504. doi:10.1371/journal.pgen.1002504

Briggs, A. W., Good, J. M., Green, R. E., Krause, J., Maricic, T., Stenzel, U., Lalueza-Fox, C., Rudan, P., Brajković D., Kućan, Z., Gusic, I., Schmitz, R., Doronichev, V. B., Golovanova L. V., Rasilla, M. D. E., Fortea, J., Rosas, A. & Pääbo, S. 2009. Targeted Retrieval and Analysis of Five Neandertal mtDNA Genomes. Science. 325 (5938): 318-321. doi:10.1126/science.1174462

Curnoe, D., Xeuping, J., Herries, A. I. R., Kanning, B., Tacon, P. S. C., Zhende, B., Fink, D., Yunsheng, Z., Hellstrom, J., Yun, L., Cassis, G., Bing, S., Wroe, S., Shi, H., Parr, W. C. H., Shengmin, H. & Rogers, N. 2012. Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians. PLoS ONE. 7 (3): 1-28. e31918. doi:10.1371/journal.pone.0031918

Finlayson, C., 2004. Neanderthals and Modern Humans: an Ecological and Evolutionary Perspective.Cambridge: Cambridge University Press.

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H., Hansen, N. F., Durna, E. Y., Malaspinas, A., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prufer, K., Meyer, M., Burbano, H. A., Good, J. M., Schultz, R., Aximu-Petri, A., Butthof, A., Hober, B., Hoffner, B., Siegemund, M., Weihmann, A., Nusbaum, C., Lander, E. S., Russ, C., Novod, N., Affourtit, J., Egholm, M., Verna, C., Rudan, P., Brajkovic, D., Kucan, Z., GUsic, I & Doronichev, V. B., Golovanova, L. V., Lalueza-Fox, C., Rasilla, M., Fortea, J., Rosas, A., Schmitz, R. W., Johnson, P. L. F., Eichler, E. E., Falush, D., Birney, E., Mullikin, J. C., Slatkin, M., Neilsen, R., Kelso, J., Lachmann, M., Reich, D. & Paabo, S. 2010. A Draft Sequence of the Neandertal Genome. Science. 328 (5957): 710-722.

Harvati, K., Stringer, C., Grun, R., Aubert, M., Allsworth-Jones, P. & Folorunso, C. A. 2011. The Later Stone Age Calvaria from IwoEleru, Nigeria: Morphology and Chronology. PLoS ONE. 6 (9): 1-8.  e24024. doi:10.1371/journal.pone.0024024

Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. 2007. Recent Acceleration of Human Adaptive Evolution. Proceedings of the National Academy of Sciences. 104 (52): 20753-20758.

Herrera, K. J., Somarelli, J. A., Lowery, R. K. & Herrera R. J. 2009. To What Extent Did the Neanderthals and Modern Humans Interact? Biological Reviews. 84: 245-257.

Hoffecker, J.F. 2009. The Spread of Modern Humans in Europe. Proceedings of the National Academy of Sciences. 106 (38): 16040–16045.

Hubin, J. J. 2009. The Prehistory of Compassion. Proceedings of the National Academy of Sciences. 106 (16): 6429-6430.

Johanson, D. C. 2001. Origins of Modern Human: Multiregional or Out of Africa?. American Institute of Biological Sciences. Accessed at http://www.actionbioscience.org/evolution/johanson.html#primer on the 24th of March 2012.

Jurmain, R., Kilgore, L. & Trevathan, W. 2011. The Essentials of Physical Anthropology, International Edition. Belmont: Wadsworth.

Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P. & Pääbo, S. 2010. The Complete Mitochondrial DNA Genome of an Unknown Hominin from Southern Siberia. Nature. 464: 894-897. doi:10.1038/nature08976

Le Fanu, J. 2009. Why Us? How Science Rediscovered The Mystery of Ourselves. London: HarperPress.

McEwan, I. 2012. The Originality of the Species. The Guardian: Books Section. 23rd March 2012. Accessed at http://www.guardian.co.uk/books/2012/mar/23/originality-of-species-ian-mcewan on the 24th March 2012.

Mellars, P. 2006. Why did Modern Human Populations Disperse from Africaca. 60,000 Years Ago? A New Model. Proceedings of the National Academy of Sciences. 103 (25): 9381–9386.

Millard, A. R. 2008. A Critique of the Chronometric Evidence for Hominid Fossils: 1. Africa and the Near East 500-50KA. Journal of Human Evolution. 54 (6): 848-874.

Noonan, J. P. 2010. Neanderthal Genomics and the Evolution of Modern Humans. Genome Research. 20: 547-553.

Nowell, A. 2010. Defining Behaviour Modernity in the Context of Neandertal and Anatomically Modern Human Populations. Annual Review of Anthropology. 39:  437-454.

Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S. & Reich, D. 2006. Genetic Evidence for Complex Speciation of Humans and Chimpanzees. Nature. 441: 1103-1108.

Pearson, O. M. 2008. Statistical and Biological Definitions of “Anatomically Modern” Humans: Suggestions for a Unified Approach to Modern Morphology. Evolutionary Anthropology. 17: 38-48.

Pettitt, P. 2005. ‘The Rise of Modern Humans’. In Scarre, C. (ed) The Human Past: World Prehistory & the Development of Human Societies. London: Thames & Hudson. pp 124-175.

Prat, S., Péan, S. C., Crépin, L., Druker, D. G., Puaud, S. J., Valladas, H., Láznicková-Galetova, M., Plicht, J. V. & Yanevich, A. 2011. The Oldest Anatomically Modern Humans from Far Southeast Europe: Direct Dating, Culture and Behaviour. PLoS ONE. 6 (6): 1-13. e20834. doi:10.1371/journal.pone.0020834

Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L. F., Maricic, T., Good, J. M., Marques-Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V. Derevianko, A. P., Hublin, J. Kelso, J., Slatkin, M. & Paabo, S. 2010. Genetic History of an Archaic Hominin Group from Denisova Cave in Siberia. Nature. 468: 1053-1060.

Rightmire, G. P. 2008. Homo in the Middle Pleistocene: Hypodigms, Variation, and Species Recognition. Evolutionary Anthropology. 17: 8-21.

Roebroeks, W., Sier, M. J., Nielsen, T. K., Loecker, D. D., Parés, J. M., Arps, C. E. S. & Mucher, H. J. 2012.  Use of Red Ochre by Early Neandertals. Proceedings of the National Academy of Sciences. Early Edition. 1-12. doi: 10.1073/pnas.111.2261109

Tattersall, I. & Schwartz, J.H., 1999. Hominids and Hybrids: The Place of Neanderthals in Human Evolution. Proceedings of the National Academy of Sciences, 96: 7117–7119.

Tattersall, I. & Schwartz, J. H. 2008. The Morphological Distinctiveness of Homo Sapiens and Its Recognition in the Fossil Record: Clarifying the Problem. Evolutionary Anthropology. 17: 49-54.

Wakeley, J. 2008. Brief Communication Arising: Complex Speciation of Humans and Chimpanzees. Nature. 452: E3.

Wong, K. 2012. First of Our Kind. Scientific American. 306 (4): 20-29.

Wood, B. 2005. Human Evolution: A Very Short Introduction. Oxford: Oxford University Press.

Zilhao, J., 2006. Neanderthals and Moderns Mixed, and It Matters. Evolutionary Anthropology. 15: 183–195.

Zilhao, J., Angelucci, D. E. Badel-García, E., d’Errico., Daniel, F., Dayet, L., Douka, K., Highm, T. F. G., Martínez-Sánchez, M. J., Montes-Bernárdez, R., Murcia-Mascasrós, S., Pérez-Sirvent, C., Roldán-García, C., Vanhaeren, M., Villaverde, V., Wood, R & Zapata, J. 2010. Symbolic use of Marine Shells and Mineral Pigments by Iberian Neanderthals. Proceedings of the National Academy of Sciences. 107 (3): 1023–1028.

John Hawks Announces Free Online ‘Human Evolution: Past & Present’ Course for 2014

7 Apr

The palaeoanthropologist professor John Hawks has released news about an exciting and innovative massive open online course (MOOC) entitled ‘Human Evolution: Past and Present’.  The course is to be taught online and will begin in January 2014.  John Hawks is a well known anthropologist who studies the bones and genetics of ancient humans, and is the Associate Professor of Anthropology at the University of Wisconsin-Madison.  The course will detail all the latest aspects of continuing research into human evolution, and the course will feature expert interviews, mini-documentaries, guided laboratories, participatory science, as well as looking to the future of human evolution with the ‘impact of technology on our future evolution’.  This represents the best of open access science, and the chance to participate in a truly worldwide educational initiative.

Importantly Hawks announces that:

“This course and all its materials will be open and free for anyone, anywhere in the world. As of this moment, more than 6500 people have already signed up for the course. The course is still more than nine months away, and I’ll be developing materials across the entire time up through January” (emphasis mine).

Update 30/01/14

Sadly due to US export restrictions the US goverment have now banned Coursera MOOC courses in Sudan, Iran and Cuba.  This frankly illogical banning of the freedom of education is indicative of the worst aspects of a government.

Further Information

  • Read more on the announcement of the MOOC on the John Hawks weblog here, and sign up here for the course.  This is a fantastic initiative and one not to miss if you are interested in human evolution and human osteology.

Human Osteology Courses in the UK

22 Jan

This is something I should have done a while ago.  Regardless, whilst I was doing some light research for another article I made a quick list of every course in the UK that offers human osteology as a taught masters (either as an MA – a Masters of Arts or as an MSc – Masters of Science) or offer a distinctive human osteology module or component within a taught masters degree.  England is well represented within the universities highlighted, Scotland only comes in with two entries whilst Wales and Northern Ireland, as far as I know, offer no distinctive osteological courses at the Masters level.  Further to this the reader should be aware that some universities, such as the University of Leicester, offer commercial or research centers for human and animal osteology yet run no postgraduate courses that provide the training in the methods of osteoarchaeology.  Thus they are excluded from this list.

This information is correct as of the 8 January 2014, but please expect at least some of the information to change.  I think we could likely see a raise in the tuition fees for MSc and MA courses within the next few years, as a direct knock on effect of the upping of undergraduate fees.  It should be noted here that the education system in the UK is well-regarded, and it’s educational institutions are often in the top 10% in world league tables; however it can be very expensive to study here, especially so in the consideration of prospective international students.  Please also take note of the cost of renting (especially in the south east of the country) and the high cost of daily living.  The list is not an exhaustive attempt and I am happy to add any further information or to correct any entries.

skull-saxon

A example of an archaeological skull. Image credit: source.

MA/MSc Degrees in England

Bournemouth University:

University of Bradford:

University of Cambridge:

  • MPhil Human Evolution (amazingly there are 18,000 skeletons in the Duckworth Collection).

Cranfield University:

Liverpool John Moores University:

UCLAN:

University College London:

University of Durham:

  • MSc Palaeopathology (Fees available on request, expect UK/EU £5000 and International £14,000).
  • MSc Evolutionary Anthropology (Fees available on request, expect UK/EU £5000 and International £14,000).

University of Exeter:

Universities of Hull and York Medical School:

  • MSc Human Evolution (A very interesting course, combining dissection and evolutionary anatomy) (UK/EU £4620 and International £16,540).

University of Liverpool:

University of Manchester:

  • MSc Biomedical and Forensic Studies in Egyptology (course under review).

University of Oxford:

University of Sheffield:

University of Southampton:

University of York:

MA/MSc Degrees in Scotland

University of Dundee:

University of Edinburgh:

Please be aware of changing program fees, as some of the above information has come from the 2012/2013 course fees, and these can, and are likely, to change during the next academic year.  In conjunction with the above, a number of universities also run short courses.

The following universities offer short courses in human osteology, osteology, forensics or zooarchaeology.

Short Courses in England

Bournemouth University:

Cranfield University:

Luton Museum

Oxford Brookes University:

University of Bradford:

  • On occasion run a palaeopathology course, please check the university website for details.

University of Sheffield:

I am surprised there are not more short courses in the UK.  If you find any in the UK please feel free to drop a comment below!

11111

A University of Hull and Sheffield joint excavation at Brodsworth carried out in 2008 helped to uncover and define a Medieval cemetery. Image credit: University of Hull.

Note: A final note to prospective students, I would strongly advise researching your degree by visiting the universities own webpages, finding out about the course specifics and the module content.  I would also always advise to try and contact a past student and to gain their views on the course they have attended.  They will often offer frank advice and information, something that can be hard to find on a university webpage.  Also be aware of the high cost of UK tertiary education as prices have been raised considerably in the past few years and are likely to rise again.

Furthermore if you know of any other human osteology Masters or short courses in the UK please comment below or send me an email and I will add it to the list here.

Further Information

Evolutionary Thoughts

7 Apr

I’m currently writing an essay on the origins and definitions of Anatomically Modern Humans (Homo sapiens species), and it is an endlessly fascinating (and confusing!) topic.  Recent finds and reports have complicated the picture but have also opened up the delightful hominin evolutionary line (Jurmain et al 2011).  It is also necessarily a wide ranging subject with researchers pinpointing various features of AMH throughout the palaeoanthropological record (Jurmain et al 2011, Pettitt 2005, Tattersall & Schwartz 2008).  By seperating out the modern skeletal anatomymodern behavioural characteristics and genetic information as they appear in the fossil and archaeological record, it is my view that this approach highlights the ever changing nature of what it means to be a modern human.  This triad approach allows the investigator to realise that different aspects of what is typically expressed as AMH traits (Tattersall & Schwartz 2008: 50), whilst taken as a whole, can also be expressed at differing times due to several factors.

From our earliest anatomically modern traits described in the crania of Omo Kibish 1 & 2 from 195,000 years ago (Pettitt 2005), to cultures and symbolic behaviour attributed to populations throughout Africa by 100,000 years ago, and the evidence of the first dispersals of AMH out of Africa around 80,000-60,000 years ago (Wood 2005), it is clear that AMH have spread far beyond their homeland.  However the continuing work of researchers in Africa and elsewhere in the world has also highlighted the rentention of archaic features in certain AMH populations; examples include the intriguing Iwo Eleru crania found in Nigeria (Harvatie 2011, and Dienekes’ Anthropology post here) and the recently described Chinese skeletal remains reporting a complex evolutionary history of East Asian AMH (Curnoe et al 2012).  This can be attributed to various reasons, such as the admixture of those AMH with archaic hominids or population isolation.

Recent email communication with my friend and fellow blogger Confusedious has also highlighted the varied genetic changes in recent populations of Homo sapiens.  His excellent post on gene culture coevolution is a detailed and elegant essay discussing rapid and modern genetic changes in H. sapiens regarding disease loading in populations, gene expression and selective gene adaptation; largely as a result of agricultural uptake and increased population density (Barnes et al 2011, Hawks et al 2007).  Recent molecular work on the origin of TB (Smith et al 2009 & previously wrote about here by me) has helped highlight the need for a nuanced approach in treating the disease in modern populations.  Examples include indigenous Papua New Guinea people and the Torres Strait Islanders, who do not have a genetic history of coevolution with the disease from the practise of intense animal husbandry, and who are now threatened by today’s demographic pressure and population expansion of those who do, and who have selectively adapted to it (Barnes et al 2011).

In conclusion, the gestalt of the Homo sapiens species may be instantly recognizable to some (Tattersall & Schwartz 2008), but there are a number of factors that intertwine, such as skeletal morphology, genetic change and behavioural adaptations, that produce a species that emerged roughly 200,000 years ago and are continuing in their adaptations to this world.

Bibliography:

Barnes, I., Duda, A., Pybus, O. G. & Thomas, M. G. 2011. Ancient Urbanization Predicts Genetic Resistence to Tuberculosis. Evolution. 65 (3): 842-848.

Curnoe, D., Xeuping, J., Herries, A. I. R., Kanning, B., Tacon, P. S. C., Zhende, B., Fink, D., Yunsheng, Z., Hellstrom, J., Yun, L., Cassis, G., Bing, S., Wroe, S., Shi, H., Parr, W. C. H., Shengmin, H. & Rogers, N. 2012. Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians. PLoS ONE. 7 (3): 1-28. e31918. doi:10.1371/journal.pone.0031918

Harvati, K., Stringer, C., Grun, R., Aubert, M., Allsworth-Jones, P., & Folorunso, C. A. 2011. The Later Stone Age Calvaria from Iwo Eleru, Nigeria: Morphology and Chronology. PLoS ONE. 6 (9): e24024. doi:10.1371/journal.pone.0024024

Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. 2007. Recent Acceleration of Human Adaptive Evolution. Proceedings of the National Academy of Sciences. 104 (52): 20753-20758.

Jurmain, R., Kilgore, L. & Trevathan, W. 2011. The Essentials of Physical Anthropology, International Edition.Belmont:Wadsworth.

Pettitt, P. 2005. ‘The Rise of Modern Humans’. In Scarre, C. (ed) The Human Past: World Prehistory & the Development of Human Societies. London: Thames & Hudson. pp 124-175.

Smith, N. H. Hewinson, R. G. Kremer, K. Brosch, R. & Gordon, S. V. 2009. Myths and Misconceptions: The Origin and Evolution of Mycobacterium tuberculosisNature Reviews: Microbiology. Vol 7: 537-544.

Tattersall, I. & Schwartz, J. H. 2008. The Morphological Distinctiveness of Homo Sapiens and Its Recognition in the Fossil Record: Clarifying the Problem. Evolutionary Anthropology. 17: 49-54.

Wood, B. 2005. Human Evolution: A Very Short Introduction. Oxford: Oxford University Press.