Archive | Forensic Anthropology RSS feed for this section

Updated: Human Osteology Postgraduate Courses in the United Kingdom

14 Aug

Note: I originally wrote this post a few years ago in order to outline the available human osteology/bioarchaeology postgraduate courses in the United Kingdom as a guideline for the degree fees and topic availability.  However since then a number of substantial national and international changes have occurred.  These include, but are not limited to, the increase of undergraduate tuition fees to £9000.00 per academic year; the general increase of the price of Masters degrees; the new availability of student loans for Masters students; changes to Disabled Students Allowance from the 16/17 academic year onward; the transfer of some Student Finance grants to loans; the Government White paper released in May 2016 outlining challenges and changes needed in higher education, etc.

One of the more important changes was the outcome of the referendum in the United Kingdom whether it to remain or not a part of the European Union, this resulted in a very tight result in which the majority voted to leave the European Union.  This process will take many years, but the Government of the United Kingdom recently stated that it would guarantee European Union funding for projects signed before the Autumn Statement until 2020.  Doug, of Doug’s Archaeology, has an interesting and somewhat depressing post on what Brexit could mean for archaeology as a sector more generally


Whilst I was doing some light research for another article I made a quick list of every course in the United Kingdom that offers human osteology as a taught masters (either as an MA, Masters of Arts, or as an MSc, Masters of Science) or offer a distinctive human osteology module or component within a taught masters degree.  Human osteology is the study of human skeletal material from archaeological sites.  Human osteologists study bones to identify age, biological sex, pathology and pre- and post-mortem trauma alongside other avenues of research in human behaviour and activity, such as investigating diet and mobility of post populations.  The subject is generally only taught as a Masters level within the United Kingdom.

Within the list England as a whole is well represented within the universities highlighted, Scotland only comes in with two entries whilst Wales and Northern Ireland, as far as I know, offer no distinctive osteological courses at the Masters level.  Further to this the reader should be aware that some universities, such as the University of Leicester, offer commercial or research centers for human and animal osteology yet run no postgraduate courses that provide the training in the methods of osteoarchaeology.  Thus they are excluded from this list.

This information is correct as of September 2016, but please expect at least some of the information to change, especially in relation to course fees for United kingdom, European Union, and international students.  It should be noted here that the education system in the United Kingdom is internationally well-regarded and the educational institutions are often in the top 10% in world league tables; however it can be very expensive to study here, especially so in the consideration of prospective international students.  Please also take note of the cost of renting (especially in London and the south of the country generally) and the high cost of daily living compared to some countries.  The list is not an exhaustive attempt and I am happy to add any further information or to correct any entries.

Other Sources & Prospective Student Advice

As well as the list below, the British Association for Biological Anthropology and Osteoarchaeology also have links to human osteology and bioarchaeology courses in the United Kingdom.  You check the list out here.  The British Archaeological Jobs and Resources (BAJR) site, ran by David Connolly, also has a plethora of useful resources to check as well as an active Facebook group which is a great place to ask for advice.  I’ve also wrote a second post to compliment this one which entails what you, the prospective student, should keep in mind when looking at degree courses to pursue. You can check out that post by clicking the title here: Questions to remember when considering a postgraduate course in human osteology.


An example of an archaeological skull. Image credit: source.

Courses in the United Kingdom, please note that the fees stated are for full time students.  For part time students the price is normally halved and the course carried out over two years instead of the usual one year that is common for Masters within the United Kingdom.

MA/MSC Degrees in England

Bournemouth University:

  • MSc Forensic Osteology (UK/EU £5500 and International £13,500, from 17/18 UK/EU £5750 and International £14,000).
  • MSc Biological Anthropology (UK/EU £5750 and International £14,000, from 17/18 UK/EU £6000 and International £14,500).

University of Bradford:

University of Cambridge:

  • MPhil Human Evolution (amazingly there are 18,000 skeletons in the Duckworth Collection!).

Cranfield University:


University College London:

University of Durham:

University of Exeter:

  • MSc Bioarchaeology (Offers choice of one of three core pathway topics, including human osteology, zooarchaeology and, new for the 16/17 academic year, Forensic Anthropology) (UK/EU £6900 and International £15,950).

Universities of Hull and York Medical School:

  • MSc Human Evolution (A very interesting course, combining dissection and evolutionary anatomy) (UK/EU £6650 and International £15,680).

University of Liverpool:

Liverpool John Moores University:

University of Manchester:

  • MSc Biomedical and Forensic Studies in Egyptology (course under review).

University of Oxford:

University of Sheffield:

University of Southampton:

University of York:

MA/MSc Degrees in Scotland

University of Dundee:

University of Edinburgh:

The following universities offer short courses in human osteology, osteology, forensics or zooarchaeology

Short Courses in England

Cranfield University:

University of Bradford:

  • On occasion run a palaeopathology course, please check the university website for details.

University of Sheffield:

Note: I am still genuinely surprised there are not more short courses, if you find any in the United Kingdom please feel free to drop a comment below.


A University of Hull and Sheffield joint excavation at Brodsworth carried out in 2008 helped to uncover and define a Medieval cemetery. Image credit: University of Hull.

A Few Pieces of Advice

A piece of advice that I would give to prospective students is that I would strongly advise researching your degree by visiting the universities own webpages, finding out about the course specifics and the module content.  If possible I’d also visit the department and tour the facilities available and seek advice from the course leader with regards to potential research interests.  I would also always advise to try to contact a past student and to gain their views on the course they have attended previously.  They will often offer frank advice and information, something that can be hard to find on a university webpage or from a course leader.  Also please do be aware of the high cost of the United Kingdom tertiary education as prices have been raised considerably in the past few years and are likely to rise again, especially so in comparison to cheaper courses on the European continent.

Finally, if you know of any other human osteology or bioarchaeology Masters or short courses in the United Kingdom please do comment below or send me an email and I will add it to the list here.

Introducing Show Us Your Research! An Open Access Anthropological Project

17 Jun

One of the aims of this blog, especially more so since it has grown in the past few years, is to highlight the opportunities available to both bioarchaeology researchers and the public alike.  As a previous post highlighted, never has there been a better time to be involved with bioarchaeological research and never has it been so open before to members of the public to engage with it (for instance, try your hand here or check out some resources here!).  The communication of the aims, and the importance of the discipline, in the aid of understanding past populations and their lifestyles is of vital interest if we are to remain a dynamic and responsive field.  As such it gives me great pleasure to announce that, starting from now, I’ll be helping to disseminate the results of the Show Us Your Research! (SUYR!) project spearheaded by researchers at the University of Coimbra and the University of Algarve in Portugal.


The SUYR! logo. Image credit courtesy of GEEvH  at the Universidade de Coimbra.

The SUYR! project aims to promote the projects that archaeologists and anthropologists have been involved in by diminishing the gap between the researchers and the public by regular concise publications aimed at the public (Campanacho et al. 2015).  The project is aimed at researchers from the anthropological and archaeological fields from around the globe and accepts entries on methodologies, artefacts, theories, site studies and pathological studies, amongst other topics.  To me this is a really exciting opportunity for early career archaeologists and anthropologists and one that I am thrilled to disseminate the results of.  It is hoped that the project expands into interviews with researchers as well!

SUYR! 2015 Entry No. 4: Carina Marques and a Palaeopathological Approach to Neoplasms

The latest entry in the series focuses on malignant tumours (or neoplasms) in the palaeopathology record.  The entry, submitted by researcher Carina Marques who is based at the Research Centre for Anthropology and Heath (CIAS) at the University of Coimbra, focuses on the skeletal evidence for malignant tumours in archaeological populations by investigating prevalence and typology of their presence.  Cancer, as the World Health Organisation figures testify, is a major cause of human mortality internationally; however their neoplastic natural history, physical manifestation and evolution remains something of a ‘challenging endeavor’ (Marques 2015).

As such Marques has studied and analysed Portuguese reference collections of numerous skeletal remains dating from the 19th to 20th centuries to try to identity and catalog neoplasms in the aim to ask how precise the pathological diagnosis of malignant tumours are in fairly modern skeletal remains.  The research highlighted that the skeletal manifestations of tumours can vary and that they can present similarly to other pathological processes which can be hard to identify down to a single process.  However, the research also documented that malignant tumours often left their mark on bone, particularly metastases (after the cancer had spread from one area of the body to another).  The research has helped produce a body of data that characterizes neoplastic prevalence in these populations, providing an important historical context for the evolution of neoplasms.  Furthermore Marques (2015) has also helped clinicians identify and characterize the early lesions that can often be missed on radiological examination.

How to Submit Your Research

There are a number of formats in which submissions to SUYR! can be made – these include either a 500 word abstract of your research project, a picture or photograph with a note of no more than 200 words, or via a video lasting 3 to 5 minutes detailing the research undertaken and its importance (the specifics of the video format and style can be found here).  Remember that you are writing for interested members of the public who want to hear and read about the interesting research topics that archaeologists and anthropologists are pursuing and why.  These necessarily precludes that the use of isolating jargon is limited and that the writing is clear to understand.  More importantly, this fantastic opportunity levers the researcher with a communication channel to both the academic and public spheres alike.  SUYR! has three major themes of interest (bioanthropology, archaeology, and social and cultural anthropology) for the submissions and three researchers to contact for each interest.  The following image highlights who to contact to send your research to:


Subjects of interest in the SUYR! project and the contact details to send the research to. Image credit courtesy of the Universdade de Coimbra.

How to Get on Board

If you are a blogger, a microblogger (ie a Twitter user), or merely want to share your interest in the fields of archaeology and anthropology to your family and friends, then you too can join in spreading word about SUYR!  Simply copy and paste the website and share with your circle of family and friends.  The articles are freely available from the main SUYR! site.  If you are a college or university student who is interested in highlighting the various projects discussed via the project then perhaps you could even print out the pages and put them up on the community noticeboard in your department.  If you are an active researcher within the above fields then why not consider sending in your own past or current research?  This is a great opportunity to highlight the knowledge, breadth and depth, of archaeological research and the value of bioarchaeological research to the public.

Further Information

  • The archives of the SUYR! project can be found here for 2014 and here for 2015 years.  Both of the years papers detail some really interesting projects going on in the anthropology fields, particularly in bioarchaeology.  For example, Dr Charlotte Henderson kicks off the 2014 papers with an exciting and enlightening piece on the ability, and problems, of osteologists to infer occupation from skeletal remains.  Later on in the year Victoria Beauchamp and Nicola Thorpe investigate the work of The Workers’ Education Association (WEA) in England and assess the impact of using heritage as a teaching aid.  Both papers can be downloaded for free here.  In 2015 Dave Errickson (a friend and a previous guest blogger on this site) has an entry on his work digitizing forensic evidence using 3D scans and laser scanning.  The site itself is available to translate into a number of languages by simply clicking the scroll down box on the right hand side.
  • The Grupo de Estudos em Evolucao Humana (Group of Studies in Human Evolution), at the University of Coimbra, have a website highlighting the ongoing initiatives, activities and projects by the members of the group.  This includes hosting conferences, workshops and open days on any number of evolutionary topics.  You can find out more information here.


Campanacho, V., Pereira, T. & Nunes, M.J. 2015. Show Us Your Research! An Anthropological and Archaeological Publication for the Greater Public. Palaeopathology Newsletter. 170: 26.

Marques, C. 2015. A Palaeopathological Approach to Neoplasms: Skeletal Evidence from the Portuguese Identified Osteological Collections.  Show Us Your Research! 2015, No. 4. (Open Access).

KORA Bioarchaeology and Forensic Anthropology Workshops at the University of Kent, June 2015

9 May

The Kent Osteological Research and Analysis unit (KORA) at the University of Kent is offering individuals interested in bioarchaeology and forensic anthropology the chance to get to grips in understanding the value of analysing human skeletal remains by playing host to two workshops in June 2015.  The great selling point about these particular courses are the fact that they are open to members of the public, as well as to archaeologists who are keen to gain experience of handling and analysing archaeologically sourced human skeletal remains.

Details of the two workshops can be found below on the poster.  The first is the Medieval Burials in Canterbury workshop running on the Saturday 20th and Sunday 21st of June at a cost of £75.  The second workshop is titled CSI (Crime Science Investigation) at Kent and runs on the Saturday 27 and Sunday 28th of June, again costing £75.  Taking place at the School of Anthropology and Conservation at the Marlowe Building on Canterbury Campus, the two 2 day long courses offer the chance to learn about the methodologies used to estimate the age-at-death, biological sex and stature with hands on activities in using the methods learned beforehand.  The Medieval burials workshop, offering the chance to handle and analyse skeletal remains from the historic town of Canterbury, also includes aspects on funerary archaeology (such as burial position, grave goods and cemetery analysis).  The CSI workshop includes the opportunity to learn about the nature of traumatic injury and the effect that this can have on the skeletal elements in a human body, both during life and death.

This is a great example of education outreach aimed at highlighting just what it is that archaeologists and forensic anthropologists do with human skeletal material and, more importantly, why.  As long time readers of this blog may know the skeletal remains of humans provide an awful lot of both biological and cultural information pertaining to both that individual and their society.  As such I am enthused that such workshops are opening up to the non-specialist in order for the general public to learn what bioarchaeologists and forensic anthropologists actually do and why it is important.


The University of Kent KORA poster detailing the workshops available.

As always I am very happy to advertise bioarchaeology, human osteology or forensic anthropology short courses, or workshops, taking place in the United Kingdom on this site.  Please feel free to contact me with further information on any upcoming courses and I will endeavor to post an entry about it (time allowing).  I can be contacted via email on the About Me tab or at thesebonesofmine (at) hotmail (dot) com.

Further Information

  • To book your place on either workshop please visit the University of Kent site here or contact Jackie Fotheringham (details here) for further information on the workshops.  The School of Anthropology and Conservation plays host to a wide range of open days, conferences, workshops and education outreach events, please see here for a calendar for the year detailing these (including the anthropology of hands conference in June!).
  • The department at Kent, like the University of Durham and University College London, have a particularly strong anthropology research basis where the fields of biological anthropology, forensic science and bioarchaeology play a key foundation into the study of humanity.  Furthermore the department at kent also boasts a dedicated human osteology laboratory which has the facilities for dental and bone histology alongside stable isotope preparation and analysis.

Dactyl & Skelly Pad: Apps for Digital Bone Identification and Inventorying

10 Mar

Updates have been somewhat sparse on this site as of late due to varying workloads, both archaeological and osteological in nature, that have thus far maintained the focus of my free time.  So this is just a quick post highlighting new digital applications that have recently been released that have a specific focus and use for bioarchaeologists, palaeopathologists and forensic anthropologists, and that may be of interest amongst other related disciplines.

The first of these is the Dactyl application that has been produced by forensic anthropologists at the University of Teesside, spearheaded by Professor Tim Thompson (with a bit of help from my friend and doctoral researcher David Errickson) through the Anthronomics business.  Dactyl is a 3D viewer with photo-realistic models of actual scanned human skeletal elements that aids in the identification, siding and pathological analysis of osteological material from archaeological sites or forensic contexts.  Further to this the app also provides information on the anatomical landmarks present on individuals bones, indicating both the origins and the growth of the bone under study.  The models themselves can be zoomed in and out off, markers can be placed on the bone, and the models are full view-able from a number of directions and viewpoints (including lighting aspect).  This makes the app particularly handy for the field bioarchaeologist, or osteologist, in the identifying of skeletal material on-site or in the site hut.


A screen shot of the Dactyl application as it currently stands. In this view a right Os Coxa (i.e. the hip, consisting of the fused ilium, pubis and ischium skeletal elements) can be viewed and explored. Notice the blue and red pins identifying landmark features and their uses. Image credit: Apple iTunes store and Dactyl App (2015).

The basic app costs £16.99 from the Apple iTunes store, and there are currently three additional add-on packs available.  These are available for a further £1.99 and consist of a) basic trauma, b) basic pathologies, and the c) non-adult pack.  It should be noted here that each of these only include two skeletal models, with the basic trauma containing four individual bone models, rather than a full range of skeletal elements.  Further updates will include more examples, but I am currently unsure whether the app will be available on more than just the Apple range of devices.  Atkin (2015) has written a fairly comprehensive review which is a useful and interesting read on the benefits and limitations of the Dactyl app itself.  The app is currently under review of a second version of the program as an improvement on the first version, but this promises to be an extremely useful application for iPad wielding archaeologists regardless of further improvements on the current model (which, of course, will surely happen).

The second is the Skelly Pad application for tablets, initially a free to use app designed to aid in the digital inventory of human skeletal and dental elements in archaeological or forensic contexts (a professional version of the app may lead to a charge to download it).  The importance of maintaining a proper inventory of skeletal remains cannot be over estimated, as this is the basic task that first allows for identification and analysis of the remains under observation.  Although it is at the early stage of design and production, the Skelly Pad application is now available to download and use on tablets.  It works across a wide variety of different operating systems and devices, including iPads, Kindle Fire and Samsung Galaxy tablets.

The product is the outcome of Gill Hunt’s BSc project at the University of Reading, in an attempt to digitise and streamline the recording of skeletal remains rather than rely on a paper record.  Currently Skelly Pad is only able to inventory the remains of adult individuals in the latest version of the application, although this includes all of the normal inventory sections (including completeness, age-at-death, biological sex, stature, pathology, etc).  The full range of current features that the Skelly Pad incorporates can be found here, and it certainly looks useful for the bioarchaeologist or forensic archaeologist, particularly in a setting where paper recording may be unsatisfactory for rapid recording of a skeletal inventory.  The Skelly Pad is now available through the App store, Google Play and Amazon.

By highlighting the two above applications, I think it becomes clear that as technology advances and powerful computers are now available in the palm of your hand, that innovation in the archaeological world also continues to make use of it, helping to overcome the limitations of access to skeletal collections, dreary weather and taking the weight off your shoulders (literally, if you have ever tried to carry around an anatomical textbook or a collection of osteological reference manuals).  Together with online resources such as Digitised Diseases (where 3D models of the effects of disease and trauma on human skeletal material are available to view for free), we are really seeing barriers being broken down to the access of both knowledge and collections.

An interesting side feature of this is the ethical edge of digitising and replicating the skeletal remains of individuals.  As we model their remains, replicate them on hundreds, if not thousands of machines, or create isolated 3D models of isolated elements, do we dis-embody and de-individualise the person themselves that they (the skeletal elements) once belonged to?  Does the educational need to correctly identify, record, and ultimately protect uncovered remains trump the loss of physical context of the bones that are used for digitisation as we transport them into the digital realm?  Are we distancing the feel and handling of bone itself, by relegating it to a flat screen?  These are broad-based questions with no straight forward answers.

It is clear, I hope, that I heartily approve of the magnificent steps forward that digital technology is allowing researchers to make in the understanding and recording of human remains using innovative techniques, particularly so given the fragile nature of the material (see Errickson et al. 2015 for good practice guidelines regarding scanning of osteological material).  The above are only two such examples of what I am sure is a thriving, independent and growing market.  A balance is always needed between access to physical reference collections, 3D models and osteological manuals, when assessing and analyzing assemblages from archaeological or forensic contexts.  One method cannot replace another.

As satisfying as having a handbook of osteology on your phone or tablet may be, nothing beats the heavy thud of a good reference textbook going into a rucksack or the boot of a car, ready for a days work.

Further Information

  • The Dactyl application for Apple products can be found either on the Apple app website or on Google Play.  The company behind the product, Anthronomics, can be found here.  It is an interesting company started by Professor Thompson himself which aims to invent useful programs, applications or devices to help aid in the recording, identifying and analysing of human skeletal material.  One to watch!
  • The Skelly Pad application for tablets (for use with Android, Amazon and Apple devices) can be found here and is available at each of the device makers stores to download for free.  The Skelly Pad blog can be found here also, which details the current version, and will host regular blog updates as the app as it proceeds to include further sections.
  • Digitised Diseases, a project spearheaded by the University of Bradford with a range of partners, depicts a number of 3D models of scanned human skeletal elements from archaeological sites with evidence of trauma or disease processes.  The models have been recorded and scanned using radiography, CT scanning and laser scanning techniques to produce highly accurate models showing the effects of disease or trauma on human skeletal elements.  These models can be viewed on the website itself or can be downloaded onto a computer, tablet or smart phone for future offline use.  I have previously discussed the open access site here.  You can also have a look to see how useful the site is for bloggers, as I helped illuminate one of my previous arm fractures with an example from the site, see here.


Atkin, A. 2015. Review of Dactyl: An Interactive 3D Osteology App [iPad]Internet Archaeology. 38. DOI: (Open Access).

Errickson, D. Thompson, T. & Rankin, B. 2015. An Optimum Guide for the Reduction of Noise using a Surface Scanner for Digitising Human Osteological Remains. Archaeology Data Service. Guides to Good Practice. (Open Access).

Aging: ldentifying Puberty in the Osteoarchaeological Record

15 Feb

Aside from some recent technological mishaps (now resolved!), which has resulted in a lack of posts recently, I’ve also been doing some preliminary research into human skeletal aging and human biological aging in general.  Partly this has been out of general interest, but it was also background reading for a small project that I was working on over the past few months.

Knowledge of the aging of the skeletal system is of vital importance to the bioarchaeologist as it allows age estimates to be made of both individuals and of populations (and thus estimates of lifespans between generations, populations and periods) in the archaeological record.  The aging of human remains, along with the identification of male or female biological sex (not gender, which is socially constructed) and stature in adults, when possible, provides one of the main cornerstones of being able to carry out a basic demographic analysis of past populations – estimates of age, sex, stature at death, the construction of life tables and the construction of mortality profiles of populations, etc.  At a basic level inferences on the funerary treatment on individuals of different ages, and between different periods, can also be made.  For example, in identifying the possible differential treatment of non-adults and adults in funerary customs or of treatment during their lifetime as revealed by their burial context according to their age-at-death.

Growing Pains

However, aging is not quite straight forward as merely understanding and documenting the chronological age of a person – it is also about understanding the biological age of the body, where the body undergoes physiological and structural changes according to the biological growth stage (release of hormones influencing growth, maturation, etc).  Also of importance for the bioarchaeologist and human osteologist to consider is the understanding of the impact and the implications that the environment (physical, nutritional and cultural) can also have on the development and maturation of the skeletal system itself.  Taken as such aging itself is a dynamic process that can depend on a number of co-existing internal and external factors.

For instance, environmental stresses (i.e. nutritional access) can leave skeletal evidence in the form of non-specific markers of stress that can indicate episodes of stunted growth, such as Harris lines on the long bones (identifiable via x-rays), or episodic stress periods via the dentition (the presence of linear or pitted enamel hypoplasias on the teeth) (Lewis 2007).  Knowing what these indications look like on the skeleton means that the bioarchaeologist can factor in episodes of stress which may have led to a temporary cessation of bone growth during childhood or puberty, a period where the bones haven’t achieved their full adult length, due to a lack of adequate nutrition and/or physical stresses (White & Folkens 2005: 329).

It is recognised that humans have a relatively long adolescence and that Homo sapiens, as a species, senescence rather slowly.  Senescence is the process of gradual deterioration of function that increases the mortality of the organism after maturation has been completed (Crews 2003).  Maturation simply being the completion of growth of an individual themselves.  In an osteological context maturation is complete when the skeleton has stopped growing – the permanent dentition, or 2nd set of teeth, have fully erupted, and the growth of the individual skeletal elements has been completed and the bones are fully fused into their adult forms.

This last point refers to epiphyseal growth and fusion, where, in the example below, a long bone has ossified from several centres (either during intramembranous or endochondral ossification during initial growth) and the epiphyses in long bones fuses to the main shaft of the bone, the diaphysis, via the metaphysis after the growth plate has completed full growth following puberty (usually between 10-19 years of age, with females entering puberty earlier than males) (Lewis 2007: 64).  Bioarchaeologists, when studying the remains of non-adults, rely primarily on the development stage of the dental remains, diaphysis length of the long bones (primarily the femora) and the epiphyseal fusion stage of the available elements in estimating the age-at-death of the individual (White & Folkens 2005: 373).

bone growth

A basic diagram showing the ossification and growth of a long bone until full skeletal maturation has been achieved  Notice the fusion points of the long bones, where the epiphysis attaches to the diaphysis (shaft of the bone) via the metaphysis. Image credit: Midlands Technical College. (Click to enlarge).

After an individual has attained full skeletal maturation, the aging of the skeleton itself is often reliant on wear analysis (such as the wearing of the teeth), or on the rugosity of certain features, such as the auricular surface of the ilium and/or of the pubic symphysis, for instance, dependent on the surviving skeletal elements of the individual.  More general biological post-maturation changes also include the loss of teeth (where there is a positive correlation between tooth loss and age), the bend (or kyphosis) of the spinal column, and a general decrease in bone density (which can lead to osteoporosis) after peak bone mass has been achieved at around 25-30 years old, amongst other more visible physical and mental features (wrinkling of the skin, greying of the hair, slower movement and reaction times) (Crews 2003).

Gaps in the Record

There are two big gaps in the science of aging of human skeletal remains from archaeological contexts: a) ascertaining the age at which individuals undergo puberty (where the secondary growth spurt is initiated and when females enter the menarche indicating potential fertility, which is an important aspect of understanding past population demographics) and b) estimating the precise, rather than relative, age-at-death of post-maturation individuals.  The second point is important because it is likely that osteoarchaeologists are under-aging middle to old age individuals in the archaeological record as bioarchaeologists tend to be conservative in their estimate aging of older individuals, which in turn influences population lifespan on a larger scale.  These two issues are compounded by the variety of features that are prevalent in archaeological-sourced skeletal material, such as the effects of taphonomy, the nature of the actual discovery and excavation of remains, and the subsequent access to material that has been excavated and stored, amongst a myriad of other processes.

So in this short post I’ll focus on highlighting a proposed method for estimating puberty in human skeletal remains that was published by Shapland & Lewis in 2013 in the American Journal of Physical Anthropology.

Identifying Puberty in Human Skeletal Remains

In their brief communication Shapland and Lewis (2013: 302) focus on the modern clinical literature in isolating particular developmental markers of pubertal stage in children and apply it to the archaeological record.  Concentrating on the physical growth (ossification and stage of development) of the mandibular canine and the iliac crest of the ilium (hip), along with several markers in the wrist (including the ossification of the hook of the hamate bone, alongside the fusion stages of the hand phalanges and the distal epiphysis of the radius) Shapland and Lewis applied the clinical method to the well-preserved adolescent portion (N=78 individuals, between 10 to 19 years old at death) of the cemetery population of St. Peter’s Church in Barton-Upon-Humber, England.  The use of which spanned the medieval to early post-medieval periods (AD 950 to the early 1700) (Shapland & Lewis 2013: 304).

All of the individuals used in this study had their age-at-death estimated on the basis of dental development only – this is due to the strong correlation with chronological age and the limited influence of the environment and nutrition has in dental development.  Of the 78 individuals under study 30 were classed as probable males, 27 as probable females and 21 classed as indeterminate sex – those classed as a probable male or female sex were carefully analysed as the authors highlight that assigning sex in adolescent remains is notoriously problematic (the ‘holy grail’ of bioarchaeology – see Lewis 2007: 47), therefore only those individuals which displayed strong pelvic traits and were assigned an age under the 16 years old at the age-at-death were assigned probable male and female status.  Those individuals aged 16 and above at age-at-death were assigned as probable male and female using both pelvic traits and cranial traits, due to the cranial landmarks being classed as secondary sexual characteristics (i.e. not functional differences, unlike pelvic morphology which is of primary importance) which arise during puberty itself and shortly afterwards (Shapland & Lewis 2013: 304-306).

The method involves observing and noting the stage of each of the five indicators (grouped into 4 areas of linear progression) listed above.  It is worth mentioning them here in the sequence that they should be observed in, together in conjunction with the ascertained age at death via the dental analysis of the individual, which is indicative of their pubertal stage:

1) Mineralization of the Mandibular Canine Root

As noted above dental development aligns closer with chronological age than hormonal changes, however ‘the mineralization root of the mandibular canine may be an exception to this rule’ (Shapland & Lewis: 303). This tooth is the most variable and least accurate for aging, aside from the 3rd molar, and seems to be correlated strongly with the pubertal growth spurt (where skeletal growth accelerates during puberty until the Peak Height Velocity, or PHV, is reached) than any of the other teeth.  In this methodology the stage of the canine root is matched to Demirjian et al’s (1985) stages, where ‘Stage F’ indicates onset of the growth spurt and ‘Stage G’ is achieved during the acceleration phase of the growth spurt before PHV (Shapland & Lewis 2013: 303).

3) Ossification of the Wrist and the Hand

The ossification of the hook of the hamate bone and of the phalangeal epiphyses are widely used indicators in medicine of the pubertal stage, however in an archaeological context they can be difficult to recover from an excavation due to their small and discrete nature.  The hook (hammulus) of the hamate bone (which itself can be palpated if the left hand is held palm up and the bottom right of the hand itself is pinched slightly as a bony protrusion should be felt, or vice versa if you are left handed!) ossifies during the acceleration phase of the growth spurt in both boys and girls before HPV is attained.  The appearance, development and fusion of the phalangeal epiphyses are also used to indicate pubertal stage, where the fusion has been correlated with PHV in medical research.  With careful excavation the epiphyses of the hand can be recovered if present.

4) Ossification of the Iliac Crest Epiphysis

As this article notes that within orthopaedics it is noted that the ‘Risser sign‘ of the crest calcification is commonly used as an indicator of the pubertal growth spurt.  The presence of an ossified iliac crest, or where subsequent fusion has begun, can be taken as evidence that the PHV has passed and that menarche in girls has likely started, although exact age cannot be clarified.  The unfused iliac crest epiphyses are rarely excavated and recorded due to their fragile nature within the archaeological context, but their absence should never be taken as evidence that this developmental stage has not been reached (Shapland & Lewis 2013: 304).

5) Ossification and Epiphsyeal Fusion of the Distal Radius

The distal radius epiphysis provides a robust skeletal element that is usually recovered from archaeological contexts if present and unfused.  The beginning of the fusion is known to occur during the deceleration phase of puberty at around roughly 14 years of age in females and 15 years of age in males, with fusion completing around 16 years old in females and 18 years old in males (Shapland & Lewis 2013: 304).

Results and Importance

Intriguingly although only 25 (32%) of the 78 individual skeletons analysed in this study had all five of the indicators present, none of those presented with the sequence out of step (Shapland & Lewis 2013: 306).  The initial results indicate that it is quite possible to identify pubertal growth stage for adolescent individuals in the archaeological record based on the preservation, ossification and maturation stage of the above skeletal elements.  Interestingly, the research highlighted that for all adolescents examined in this study from Barton-Upon-Humber indicated that the pubertal growth spurt had started before 12 years of age (similar to modern adolescents), but that is extended for a longer time than their modern counterparts (Shapland & Lewis 2013: 308).  This was likely due to both genetic and environmental factors that affected the individuals in this well-preserved medieval population.

Further to this there is the remarkable insight into the possible indication of the age of the females entering and experiencing menarche, which had ramifications for the consideration of the individual as an adult in their community, thereby attaining a probable new status within their community (as is common in many parts of the world, where initiation ceremonies are often held to mark this important stage of sexual fertility in a woman’s life).  This is the first time that this has been possible to identify from skeletal remains alone and marks a landmark (in my view) in the osteological analysis of adolescent remains.

As the authors conclude in the paper the method may best be suited to large cemetery samples where it may help provide a ‘broader picture of pubertal development at a population level’ (Shapland & Lewis 2013: 309).  Thus this paper helps bridge an important gap between childhood and adulthood by highlighting the physiological changes that individuals go through during the adolescent phase of human growth, and the ability to parse out the intricate details our individual lives from the skeletal remains themselves.


Crews, D. E. 2003. Human Senescence: Evolutionary and Biocultural Perspectives. Cambridge: Cambridge University Press.

Lewis, M. E. 2007. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Shapland, F. & Lewis, M. E. 2013. Brief Communication: A Proposed Osteological Method for the Estimation of Pubertal Stage in Human Skeletal Remains. American Journal of Physical Anthropology. 151: 302-310.

White, T. D. & Folkens, P. A. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Present Day Skeletal Variation: What Are We Missing?

5 Nov

Over at his weblog John Hawks has a quick write-up on a news article by Vox journalist Joseph Stromberg on the Forensic Anthropology Centre at Texas State University that makes a very important point.  It is worth quoting John hawks comments on the article in full here:

The skeletal material from the University of Tennessee forensic research unit constitutes the single most important collection for understanding variation within the skeletons of living Americans. Most collections of human skeletal material in museums and universities were acquired early in the twentieth century, or represent archaeological remains. Those are important collections, but do not represent today’s biology — people today are much heavier, live longer, suffer fewer ill-health episodes early in their lives, and often survive surgeries and skeletal implants when they reach advanced ages. To understand how human biology affects bone today, and to understand the variation in bones of living people, new collections are incredibly important. They are literally priceless, because collections of this kind cannot be bought. They result only from the generosity and interest of donors who leave their remains for this purpose.

– taken from John Hawks (2014, emphasis mine).

This is an incredibly point as osteoarchaeologists and human osteologists often studied the remains of individuals from archaeological contexts or pre-21st century skeletal series that will not represent the current state of human biology and population variation.  As a graduate of the University of Sheffield’s MSc program in Human Osteology and Funerary Archaeology I had the honour and opportunity to dissect a human cadaver as a part of the human anatomy module.  This is a fairly rare opportunity for students of osteoarchaeology in the United Kingdom, with only a small selection of universities offering dissection within their musculoskeletal focused human anatomy modules.  As such I will remain forever grateful to both the university and to the individuals who have donated their bodies in order for students to learn about past and present human populations, and the natural variation therein.

There is also a worry that the UK lacks skeletal reference collections of modern individuals of known age, sex and ancestry, which could have a particular impact on understanding the physiology of modern skeletal samples that are being excavated as development and construction necessitate removal of early modern cemeteries (Sayer 2010).

Relevant to the above is the fact that Vazquez et al. (2005) & Wilkinson (2007) have also discussed the problems in teaching gross anatomy in medical schools across Europe, highlighting the long-term decline of gross anatomical dissection across the medical board and the largely unfamiliar anatomical terms which have influenced the effective learning of gross anatomy.  The dissection classes that I participated in at the University of Sheffield took part in the Medical Teaching Unit, where our small cluster of osteoarchaeologists and palaeoanthropologists were vastly outnumbered by the medical students.

There is an important link here as the bones that osteoarchaeologists and palaeoanthropologist study are the physical remains of once living individuals, but if we are to continue to study the natural and ongoing variation seen within the human species it is important that we have the resources available to understand not just the skeletal tissue but also the soft tissues as well.

Facilities such as the Forensic Anthropologist Research Centre, and the older University of Tennesse Anthropological Research Facility, are important examples of being able to study and research the effects of soft tissue decay in a relatively natural environment.  This is not just useful for forensic or archaeological studies but, again, also for understanding ongoing changes in human populations.  The article by Stromberg above ends on an important point that always bears consideration when studying human cadavers or skeletal tissue:

Still, there’s a danger to becoming too habituated to these bodies and forgetting what they represent. Ultimately, they’re a teaching tool, but they’re more than just a specimen. “You’ve got a job to do, but you’ve also got to remember that this body was once a living person,” Wescott says. “You’ve got to remember that there are family members and friends who love this person, and the body deserves your respect.” (Stromberg 2014, emphasis mine).

Further Information

  • Learn more about the important work being conducted at the Forensic Anthropology Research Facility at Texas State University here.  If desired you can donate your body here.
  • Learn about the whole body donation program at the University of Sheffield here.


Hawks, J. 2014. A Visit to the World’s Largest Body Farm. John Hawks Weblog. Accessed 4th November 2014. (Open Access).

Sayer, D. 2010. Ethics and Burial Archaeology, Duckworth Debates in Archaeology. London: Gerald Duckworth & Co Ltd.

Stromberg, J. 2014. The Science of Human Decay: Inside the World’s Largest Body Farm. Vox. Accessed 4th November 2014. (Open Access).

Vazquez, R., Riesco, J. M. & Carretero, J. 2005. Reflections and Challenges in the Teaching of Human Anatomy at the Beginning of the 21st Century. European Journal of Anatomy9 (2): 111-115. (Open Access).

Wilkinson, A. T. 2007. Considerations in Students’ Learning of Anatomical Terminology. European Journal of Anatomy. 11 (s1): 89-93. (Open Access).

Skeletal Series Part 12: Human Teeth

28 Oct

Basic human permanent dentition. Click to enlarge.  Image credit: modified from here.

Teeth, as a part of the dentition, are a wonder of the natural world and come in a variety of forms and designs in vertebrate animals, with perhaps some of the most impressive examples include the tusks of elephants and walruses.  They are also the only part of the human skeletal system that can be observed naturally and the only part that interact directly with their environment via mastication (White & Folkens 2005: 127).

Although primarily used to break down foodstuffs during mastication, teeth can also be used as tools for a variety of extramasticatory functions such as the processing of animal skins and cord production (Larsen 1997: 262).  As the hardest of the biological material found in the body teeth survive particularly well in both the archaeological and fossil records, often surviving where bones do not.  Teeth are a goldmine of information for the human osteologist and forensic anthropologist alike as they can be indicative of the sex, age, diet and geographic origin of the individual that they belong to (Koff 2004, Larsen 1997, Lewis 2009, White & Folkens 2005).

This entry will introduce the basic anatomy of the human dental arcade, deciduous and permanent dentition and the various tooth classes, alongside a quick discussion of the action of mastication itself.  But first, as always in this series, we’ll take a look at how teeth can be found during the excavation of archaeological sites.  This post marks the final Skeletal Series post to deal explicitly with individual elements of the human skeletal system.  The next few posts in the Skeletal Series will be aimed at detailing the methods used in aging and sexing elements in the adult and non-adult skeleton (and the success rates of the various methods), followed by posts introducing the pathological conditions that can be present on human skeletal remains.


The 32 permanent human teeth, located in the upper arcade (maxilla) and lower arcade (mandible) of the jaws, each holding 16 teeth, are resilient to chemical and physical degradation.  Furthermore tooth crown morphology (the surface that consists of enamel) can only be changed by attrition (tooth wear), breakage, or demineralization once the crown of a tooth has erupted through the gum line (White & Folkens 2005: 127).  As such teeth are often found at locations where human remains are suspected to be buried or otherwise excavated.  Care must be taken around the fragile bones of the spanchnocranium (i.e. the facial area of the skull), defined as necessary, and, if needed due to fragility, the area may have to be lifted with natural material still adhered to the bone to be more carefully micro-excavated in the lab (Brothwell 1981: 3).

Circled in red, the teeth are located in the upper (maxilla) and lower (mandible) jaws. This individual, dating to the medieval period in eastern Germany, highlights a common occurrence in supine burials where the mandible often ‘falls’ forward as the muscles, ligaments and tendons decompose. Always be careful when excavating suspected burial features as both bone and tooth can be chipped by trowels or other metallic excavation implements. Photograph taken by author.

Loose dentition may be found around the skull itself as teeth can be loosened naturally postmortem as natural ligaments decompose.  Sieving around the location of the skull may prove useful in finding loose teeth and also the smaller bones of the skulls (such as the ear ossicles).  In the excavation of non-adult remains, or of suspected females with fetal remains in-situ, great care should be taken in recording and the excavating of the skull, torso and pelvis.  As mentioned below teeth form from the crown down, as such deciduous or permanent teeth during growth may be loose in exposed crypts in the mandible or maxilla (Brickley & McKinley 2004).  Furthermore due to the small size and colour of the 20 deciduous teeth, especially the crowns during the formation and growth of the teeth, may be mistaken for pieces of dirt or rocks.

Tooth Anatomy & Terminology

The basic anatomy of teeth can be found in the diagram below, but it is worth listing the anatomical features of a typical tooth here.  The chewing surface of the tooth is called the occlusal surface and it is here that the crown of the tooth can be found.  The crown of a tooth is made of enamel, an extremely hard and brittle mixture of minerals (around 95-96% hydroxyapatite).  The enamel is formed in the gum and once fully formed contains little organic material.  The demineralization of teeth can repair initial damage, however this is limited in nature.  Dentin (sometimes termed dentine) is the tissue that forms the core of the tooth itself.  It is supported by a vascular system in the pulp of the tooth.  Dentin can only repair itself on the inner surface (the walls of the pulp cavity), but dentin is a softer material than enamel and once exposed by occlusal wear it erodes faster than enamel.  The pulp chamber, in the centre of the diagram below, is the largest part of the pulp cavity at the crown end of the tooth.  The pulp itself is the soft tissue inside the pulp chamber, which includes the usual trio bundle of vein, artery and nerves (V.A.N.).  The root of the tooth is the part that anchors it into the dental alveolus tissue (sockets) of the jaw (either the maxilla or mandible).


The basic anatomy of a tooth (in this case a molar), outlining the three main layers present in all human teeth. Image credit: Kidport.

Cementum is the bone type tissue that covers the external surface of the roots of teeth.  The apex, or apical foramen, is the opening at the end of each root, which allows for the nerve fibers and vessels up the root canal into the pulp chamber.  Heading back up to the occlusal surface of the tooth we encounter cusps of the crown, each of which have different individual names depending on their position.  Upper teeth end with the prefix -cone whereas lower teeth end with the prefix -conid (see details here).  Finally we have fissures, which are clefts between the occlusal surfaces between cusps.  Fissures help divide the cusps into patterns and are helpful to know to help identity individual teeth (specifically the molars).  Above information taken from White & Folkens (2005: 130-131).

As previously highlighted there are some directional terms that are specific to the dentition, but it is pertinent to repeat some of the key aspects here for clarification as tooth orientation is important –

Apical: towards the root.
Buccal: towards the cheek (the buccinator muscle- the terminator of the muscle world!), used in realtion to posterior teeth (premolars and molars) only.
Cervical: towards the base of the crown or neck of the tooth (often called the cementoenamel junction).
Distal (direction): away from the midline of the mouth, opposite of mesial.
Incisal: towards the cutting edge of the anterior teeth.
Interproximal: between adjacent teeth, also useful to know and be able to identify are interproximal contact facets (IPCFs) which can indicate anatomical location of  tooth.
Labial: surface towards the lips, anterior teeth (canines and incisors) only.
Lingual: of the tooth crown towards the tongue.
Mesial (direction): towards the midline, closest to the point where the central incisors contact each other.
Occlusal: towards the chewing surface (crown) of the tooth.


Tooth anatomical direction terminology and legend of tooth position, above is the maxillary dental arcade. Typically the uppercase and lowercase numbers refer to maxilla and mandible positions respectively, and often include a L or R for left or right hand side for quadrant location. In deciduous dentition lower case letters are used, in permanent dentition capitalization is used. Premolars are often 3rd (1st premolar) and 4th (2nd premolar) after palaeontological standards. Check out Brickley & McKinley (2004) below for BABAO recording standards. Image credit: Dr Lorraine Heidecker @

Above information taken from White & Folkens (2005: 128) and here.

A different method for recording the presence/absence and state of the individual teeth from archaeological skeletal populations is proposed by the British Association of Biological Anthropology and Osteoarchaeology (BABAO) as mentioned above.  In this method, proposed by Connell (2004: 8) the deciduous and permanent dentition are given a separate letter or number:


The BABAO 2004 guidelines for compiling a dental inventory for a skeleton. It should be noted that if compiling a large inventory for a population it is best to individually number and identify each tooth after the Buikstra & Ubelaker 1994 standards (but see also Bone Broke). Click to enlarge. Image credit: Connell (2004: 8).

Deciduous & Permanent Teeth

Humans have only two sets of teeth during their lifetimes.  The first set, known as the deciduous (primary or milk) teeth, are the first to form, erupt and function during the early years of life (White & Folkens 2005: 128).  The primary dentition consists of central incisor, lateral incisor, canine, first molar and second molar in each jaw quadrant, making a total of 20 individual deciduous teeth in all.

These are systematically lost and replaced by the permanent, or secondary, dentition throughout childhood, adolescence and early adulthood.  As noted above these include a central incisor, lateral incisor, canine, two premolars, and three molars in each jaw quadrant making a total of 32 individual permanent teeth in all.

The sequencing of the pattern of tooth eruption plays a vital clue in estimating the age of the individual, whilst tooth attrition (wear) is used in estimating individual age after the permanent dentition have fully erupted (White & Folkens 2005: 346).  The loss of a tooth, or teeth, antemortem (before death) can lead to alveolar resorption over the empty tooth socket.  Individuals who have no teeth left (often elderly individuals or individuals suffering periodontal disease) are termed edentulous.  This can lead to problems pronouncing words, the cheeks sagging inwards and problems chewing or grinding food (Mays 1999).  Perhaps the most famous example of this is one of the Dmanisi hominin fossils (crania D3444 and associated mandible D3900) whose crania lacked any teeth whatsoever and showed alveolar bone resorption of both the mandibular and maxillary arches.  However it is unknown if this is evidence of conspecific care, or just of survival, is not known (Hawks 2005).

teeth decid

The human deciduous dentition, notice the absence of any premolars and lack of third molar. The total number of deciduous teeth is 20. Not to scale. Image credit: identalhub.

Deciduous tooth formation begins only 14-16 weeks after conception.  White & Folkens (2005: 364) note that there are four distinct periods of emergence of the human dentition: 1) most deciduous teeth emerge and erupt during the 2nd/3rd year of life, 2) the two permanent incisors and first permanent molar usually emerge around 6-8 years old, 3) most permanent canines, premolars, and second molars emerges between 10-12 years old and finally 4) the 3rd molar emerges around 17/18 years old – although this can vary.  Note also that there are some differences between the sexes and between populations (Larsen 1997, Lewis 2009, Mays 1999).  Trauma, pathological conditions and diseases can also influence tooth development and eruption rates, often delaying the eruption of the permanent dentition and sometimes leaving visible deformities in the teeth themselves, such as linear enamel hypoplasia (sign of stress) or mulberry molars (specific sign of disease) (Lewis 2009: 41).

teeth perman

The human permanent dentition highlighting the 32 individual present. Notice the crown shape and sizes indicating different functions. Not to scale. Image credit: identalhub.

The basic differences between the deciduous and permanent dentition are as follows:


1. No premolars.                          2 premolars.

2. Smaller teeth, each              Larger teeth apart from premolars
tooth is smaller than                    which replace deciduous molars.

3. Cusps pointed &                  Cusps are blunt, crowns not bulbous,
crowns bulbous.                            contact areas broader.

4. Enamel less translucent, Enamel is more translucent, blueish white.
teeth appear whiter.

5. Enamel ends abruptly at    Enamel ends gradually,
the neck.                                             1st molars have no bulge at cervical margin.

6. Occlusally the Bucco-         Buccal and lingual surfaces do not converge,
lingual diameter                              therefore wider.
of molars is narrower.

7. Roots shorter and more    Roots longer and stronger, multi-rooted
delicate, separate close              teeth trunk present and roots
to crown, but are longer             do not diverge near crown.
compared to crown size.

8. Dentin is less thick.               Dentin is thicker.

9. Enamel more permeable        Enamel less permeable, more calcified,
less calcified, more                    relatively less attrition.

Above information modified from White & Folkens 2005 and here.

Tooth Class

Teeth in humans are classed into 4 separate classes of tooth based on function and position.  The classes include incisors, canines, premolars and molars, each aiding the other during the mastication of food.

teeth jawline

The human permanent dentition. Notice the larger size of the maxilla (upper) crowns compared to the mandible (lower) crowns and the differences between the roots of the same class of tooth. The first molar is the largest of the molar and the first to erupt. This can tooth can often have evidence of attrition on its cusps and crown when the 2nd and 3rd molars lack abrasion due to the 1st’s early eruption. Not to scale. Image credit: Biologycs 2012.

Maxilla Teeth:

Incisors (general: crowns flat and blade-like, outline of dentine occlusal patch is often rectangular or square if exposed by wear)

The upper incisor crowns are broad (or mesiodistally elongated) relative to their height, and have more lingual relief.  The central incisor crown is larger and more symmetrical than the lateral incisor crown but the roots are shorter and stouter to crown size than to the lateral incisor roots (White & Folkens 2005: 142).

Canines (general: crowns are conical and tusklike, canine roots longer than other roots in the same dentition, can be confused for incisors)

Upper canines are broad relative to their height and have more lingual relief, with apical occlusal wear that is largely lingual (towards the tongue) (White & Folkens 2005: 139).

Premolars (general: crowns are round, shorter than canine crowns and smaller than molar crowns, generally only have two cusps, usually single rooted but can be confused for canines but note shorter crown height)

The upper premolar crowns have cusps of nearly equal size and the crowns are more oval in occlusal outline.  Further to this the crowns of upper premolars also have strong occlusal grooves that orient mesiodistally between the major cusps, this is a key identifier for maxilla premolars (White & Folkens 2005: 140).

Molars (general: crowns larger, squarer, bear more cusps than any other tooth class, have multiple roots, 3rd molars sometimes mistaken for premolars)

Generally peaking the maxilla molars go from largest to smallest (1st molar to 3rd molar) in size and morphology.  The crowns generally have 4 cusps.  The 1st molar has three roots (two buccal and one lingual, which when seen from the buccal position the lingual root comes into view in the middle of the two buccal roots).  The occlusal surface is described as a rhomboid in shape with 4 distinctive cusps.  The 2nd molar has three roots but the two buccal roots are nearly parallel with each other, and is described as heart shape in the occlusal view.  The 3rd molar has three roots present but the two buccal roots are often fused, and the outline of the occlusal surface is also described as a heart shape.  The 3rd molar also shows greater developmental variation than either the 1st or 3rd molars, and are often the tooth that is congenitally missing.  All roots of the molars angle distally with respect to the major crown axes (White & Folkens 2005: 152).

Mandibular Teeth:


Lower incisor crowns are narrow compared to their height and have comparatively little lingual topography, further to this the roots are usually more mesiodistally compressed in cross-section (White & Folkens 2005: 139).  The lower central incisor crowns are slightly smaller than the lower lateral crowns, with shorter roots relative to the crown and absolutely than lateral incisors (White & Folkens 2005: 142).


Lower canines have comparatively little lingual relief compared to the upper canines, and the apical occlusal wear is mostly labial.  The lower canines are also narrow relative to their height (White & Folkens 2005: 139).


Lower premolar crowns are more circular in occlusal outline than upper premolars, and have comparatively weak median line grooves.  In lower premolars the long axes of the roots are angled distally relative to the vertical axis of the crown.  When IPCFs are present they are mesial and distal in location (White & Folkens 2005: 150).


Generally speaking the mandibular molars go from largest (1st molar) to smallest (3rd molar) in size and morphology, same as the maxilla molars.  The 1st mandibular molar is very recognizable as it has the largest crown with 5 cusps in the distinctive Y-5 cusp pattern and a pentagonal occlusal surface.  The two roots of the tooth tend to be long, separate and divergent.  The 3rd molar is smaller than the 1st or 2nd and have more irregular cusps and lack distal IPCFs, it also has two short and poorly developed roots that curve distally.  The occlusal surface is often described as crenelated and ovoid in shape.  The 2nd molar crown is an intermediate of the 1st and 3rd crowns (with 4 cusps) and roots (which have a distal inclination) in morphological terms, but has a distinctive +4 pattern of the occlusal surface.  All roots of the molars angle distally with respect to the major crown axes.

Graphic of the mandibular right quadrant highlighting a few of the specific dental anatomy terms from the above section. Image credit: modified from Gray’s Anatomy here.

Information for this section taken from White & Folkens 2005: 133-152 and here.

For tooth identification there are four questions to bear in mind:

A) To which category (or class) does the tooth belong?
B) Is the tooth permanent or deciduous?
C) Is the tooth an upper or a lower?
D) Where in the arch is the tooth located?

Although I’ve hinted at some of the answers above, those questions are a whole other post!  But do investigate the Human Bone Manual by White and Folkens (2005) for further information and/or Brothwell (1981) and Mays (1999).


This post will be updated to include the muscles of mastication.

Further Information

  • Over at Bone Broke Jess Beck has a number of detailed posts focusing on teeth, with a few entries describing the anatomy of the various classes of teeth in detail (expect future posts though!).  Particularly useful is the Identifying Human Teeth: Human Dentition Cheat Sheet post which can handily be downloaded as a PDF!
  • Check out this handy sheet for anatomical and direction terminology for teeth.
  • The University of Illinois at Chicago have a wonderfully helpful molar identification sheet available here.
  • Can teeth heal themselves? I wish!  Only a bit by demineralization, learn more here.
  • Over at What Missing Link? James R Lumbard has a fantastic post on how the muscles work, which includes a case study on the musculature of the jaw.
  • An in-depth 13-minute dissection video of the muscles of mastication can be found here.  Please be aware that this is a real human dissection.


Brickley, M. & McKinley, J. I. (eds.). 2004. Guidance to the Standards for Recording Human Skeletal Remains. BABAO & Reading: IFA Paper No. 7. (Open Access).

Brothwell, D. R. 1981. Digging Up Bones: The Excavation, Treatment and Study of Human Skeletal Remains. Ithica: Cornell University Press. (Open Access).

Connell, B. 2004. Compiling a Dental Inventory. In Brickley, M. & McKinley, J. I. (eds.) Guidance to the Standards for Recording Human Skeletal Remains. BABAO & Reading: IFA Paper No.7: 8. (Open Access).

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore I.,& Willan P. L. T. 2008. Human Anatomy Color Atlas and Text Book. Philadelphia: Mosby Elsevier.

Hawks, J. 2005. Caring for the Edentulous. John Hawks Weblog. Accessed 29th October 2014.

Koff, C. 2004. The Bone Woman: Among the Dead in Rwanda, Bosnia, Croatia and Kosovo. London: Atlantic Books.

Larsen, C. S. 1997. Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.

Lewis, M. E. 2009. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Mays, S. 1999. The Archaeology of Human Bones. Glasgow: Bell & Bain Ltd.

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Osteological and Forensic Books of Interest

23 Sep

I’ve been reading Doug’s latest blog series on archaeological publishing with increasing interest.  I’ve recently ordered a copy of Mary E. Lewis’s 2007 publication The Bioarchaeology of Childhood: Perspectives  from Biological and Forensic Anthropology, and I am very much looking forward to reading it as I am keen to improve my own knowledge of human non-adults, i.e. of juvenile remains.  It has also sadly been a while since I have ordered a new osteology reference book.  This isn’t from a lack of bioarchaeology books that I would like to read, far from it, but it is partially due the cost of buying such copies.  There have been a few recently released books (such as the 2014 Routledge Handbook of the Bioarchaeology of Human Conflict by Knüsel et al. and the 2013 Bioarchaeology: An Integrated Approach to Working with Human Remains by Martin et al.) that I’d love to own for my own collection, but I’m waiting until they come out in paperback as they are rather expensive otherwise.

On this blog I have often mentioned discussed and highlighted the wonders of the fantastic Human Bone Manual (2005) by White & Folkens, of Larsen’s (1997) Bioarchaeology: Interpreting Behaviour from the Human Skeleton reference book, and of Gosling et al.’s (2008) Human Anatomy: Colour  Atlas and Text Book, amongst a few others.  But I haven’t really mentioned other texts that have been especially helpful in piecing together the value of studying and understanding the context of human osteology for me, personally.  The following publications are a collection of reference books and technical manuals that have proved helpful in understanding human and non-human skeletal material, adult and non-adult remains, and on various aspects of forensic science.  I have dipped into some, read others completely – regardless they are of importance and of some use to the human osteologist and osteoarchaeologist.

So without further ado here are a few osteological and forensic themed books that have proved especially helpful to me over the past few years (and hopefully for many more years to come!):

tbom booksss 2

Books covers of the below.

I. Human and Nonhuman Bone Identification: A Colour Atlas. Diane L. France. 2009. Boca Raton: CRC Press.

Aimed at the forensic anthropologist, this concise comparative osteology guide on how to identify human skeletal remains compares and highlights anatomical differences between numerous (largely North American) mammal species (such as seal, cow, mountain sheep, domestic sheep, moose etc.).  This book highlights well the challenges faced in recognising skeletal material in the field, and trying to distinguish whether the remains are human or not.  Organised largely by element from superior to inferior (crania to pedal phalanges) into three sections, each detailing a different theme – 1. General Osteology (which includes gross/anatomy/growth/development), 2. major Bones of Different Animals (which are grouped by bone) and 3. Skeletal Elements of Human and Nonhuman Animals (which includes bones from each species shown together).  This is a great immediate reference to recognising the osteological landmarks of various species.  This book should be of particular importance to forensic anthropologists, osteoarchaeologists and zooarchaeologists.

II. Developmental Juvenile Osteology. Louise Scheuer & Sue Black (illustrations by Angela Christie). 2000. London: Elsevier Academic Press.

At the time of publication this volume was one of the few human osteological books focusing purely on the developmental osteology of juveniles.  Arranged into eleven chapters, the book details an introduction to skeletal development and aging, bone development and ossification, and embryological development before focusing chapters to specific areas of the human body (vertebral column, pectoral girdle, lower limb etc.).  The book is really quite important in understanding the juvenile skeletal, as to the untrained eye juvenile material can look nonhuman.  For any forensic anthropologist, human osteologists, or osteoarchaeologist examining juvenile skeletal material this volume is one of the best publications available in order to recognise and understand the skeletal anatomy that can be present at forensic or archaeological sites.  It is also recommended for field archaeologists who may come across juvenile skeletal material and be unaware of what it exactly is.

III. The Cambridge Encyclopedia of Human Palaeopathology. Arthur C. Aufdeheide & Conrado Rodríguez-Martín (including a dental chapter by Odin Langsjoen). 1998. Cambridge: Cambridge University Press.

A standard reference book in the fields of archaeology, palaeopathology and human osteology, the Cambridge Encyclopedia of Human Palaeopathology presents concise yet detailed descriptions and photographs documenting the variety of diseases and trauma that can affect the human skeleton.  This is a standard reference book that is heavily used in the osteoarchaeological field.  Split into chapters that detail each kind of skeletal lesion, and its recognition, within a type (endocrine disorders, skeletal dysplasia, metabolic disease, trauma, infectious diseases, etc.), the volume describes contextualises each entry with its known history, etiology, epidemiology, geography and antiquity.  Soft tissues diseases that can be found on mummies, or otherwise fleshed bodies from archaeological contexts, are also highlighted and discussed.

IV. Identification of Pathological Conditions in Human Skeletal Remains: Smithsonian Contributions to Anthropology No. 28Donald J. Ortner & Walter G. J. Putschar. 1981. Washington D.C.: Smithsonian Institution Press.

As above, this publication is another standard reference book for identifying pathological conditions in the human skeletal.  The 1981 edition is now slightly out of date regarding the etiology of some of the diseases discussed in this work, but the photographic images depicting the gross osteological change are still reliable.  Regardless this is still a vital book in understanding the development and sheer breadth of palaeopathology as a field in itself.

V. Forensic Taphonomy: The Postmortem Fate of Human Remains. Edited by William D. Haglund & Marcella H. Sorg. 1997. Boca Raton: CRC Press.

Forensic taphonomy,  the study of the processes that affect decomposition, burial and erosion of  bodies, is the focus of this publication.  This edited volume contains chapters discussing a wide range of different aspects of forensic taphonomy.  Split into five sections (1. taphonomy in the forensic context, 2. Modifications of soft tissue, bone, and associated materials, 3. Scavenged remains, 4. Buried and protected remains, 5. Remains in water) the book provides an overall perspective on important issues with pertinent case studies and techniques referenced throughout.

VI. Advances in Forensic Taphonomy: Method, Theory and Archaeological Perspectives. Edited by William D. Haglund & Marcella H. Sorg. 2001. Boca Raton: CRC Press. 

The second volume of the Forensic Taphonomy publication, this updated edition deals more widely with the issues that surround the bioarchaeological perspectives of forensic taphonomy, and how it relates to forensic anthropology.  This version includes chapters focusing on mass graves and their connection to war crimes (archaeological and forensic approaches), understanding the microenvironment surrounding human remains, interpretation of burned remains, updates in geochemical and entomological analysis,  and also highlights the updated field techniques and laboratory analysis.  Again this is another hefty publication and one that I have only dipped in and out of, but it is well worth a read as it can bring new insights into the archaeological contexts of human remains.

VII. Skeletal Trauma: Identification of Injuries Resulting from Human Rights Abuse and Armed Conflict. Edited by Erin H. Kimmerle & José Pablo Baraybar. 2008. Boca Raton: CRC Press.

This publication focuses on human rights violations in conflicts where forensic evidence is to be used in international tribunals.  It highlights a variety of case studies throughout each of the eight chapters from the numerous contributors (including the late Clyde Snow), describing both the protocols for forensic examination in human rights abuse and violations to the specifics of different classes of trauma (blast, blunt force trauma, skeletal evidence of torture, gunfire etc.).  Importantly the first two chapters focus on an epidemiological approach to forensic investigations of abuse and to the differential diagnoses of skeletal injuries that forensic anthropologists should be aware of (congenital or pathological conditions, peri- vs postmortem injuries, normal skeletal variation etc.).

VIII. The Colour Atlas of the Autopsy. Scott A. Wagner. 2004. Boca Raton: CRC Press.

A slight deviation from the curve above perhaps, but this is an informative read on why and how autopsies are carried out.  It also introduces the purpose and philosophy of the autopsy, and then the importance of circumstantial and medical history of the individual.  The book is, after the first chapter, set out in a step by step style of the procedure with numerous images, helping to detail the aim of the autopsy in medical and forensic contexts.  The book also details the different types of trauma that can be inflicted on the human body (blunt force, sharp, projectile, ballistic, etc.) and their telltale signs on flesh.  It is certainly not a book for the faint of heart, but it is informative of modern medical practice, of a procedure that has had a long and somewhat troubled history of acceptance but still remains a decisive procedure in forensic contexts.

tbom booksss

Book covers of the above.


Although this is just a short selection of publications in the fields of osteology, biological anthropology and forensic anthropology, I hope it gives a quick taste of the many different branches that can make up studying and practicing human osteology.  A few of the publications highlighted above are reference books with chapters by various authors, or are technical manuals, highlighting the step by step techniques and why those methods are used.  A number of the publications above remain standard reference books, while others will of course date somewhat as new techniques and scientific advances come into play (perhaps most evidently in the forensic contexts).  However the core value of the publication will remain as evidence of the advancements in the above fields.

Writing this post has also reminded me that I must join the nearest university library as soon as I can…

Learn From One Another

This is just a snapshot of my own readings and a few of the publications have since been revised.  I’d be happy to hear what readers of this blog, and others like it, have read and recommend in the above fields.  Please feel free to leave a comment below!


The reason that CRC Press appear often in this selection is because the organisation is a recognised publisher of technical manuals in the science fields.

Excavating the War Dead of WW2: The Eastern Front

31 Mar

It is a grim tally.  By the end of the Second World War in 1945, an estimated total of around 70 million people had been killed world-wide as a result of the conflict.  On the Eastern Front alone an estimated 26 million individuals perished, and a further 4 million individuals were listed as missing in action after the devastation and ferocity of the battles between the Nazi and Soviet armies and assorted armed factions (Applebaum 2013, Merridale 2013).

Unlike the war in Western Europe, the war in the East was total.  A large percentage of the Eastern Front dead were the civilians of various countries caught, as they so often were, between the invasions or incursions of Nazi or Soviet forces.  Whole landscapes were decimated of any economic functionality (as a part of the scorched earth policy), populations were wiped out or moved en-mass, and the savagery of the conduct of the armies poised against each other was truly horrifying.  Further to this the bulk of the Nazi extermination camps used in the Holocaust were located in Eastern Europe, and the majority of the camps were often used after the destruction of the Nazi regime by the Soviets for imprisoning political and war prisoners for many years (Applebaum 2013).  It was not simply a war of clashing ideologies but a conflict that was deeply fractured along racial, ethnic, national and international tensions.

For anyone seeking an overview and understanding of the final years of the conflict in Eastern Europe, and the subsequent communist takeover, I highly recommend historian Anne Applebaum’s (2013) Iron Curtain: The Crushing of Eastern Europe book.  It is a highly researched and detailed account of the differing methods used by the Soviet Union throughout the 1940s, in Eastern Europe, to subjugate populations and countries to the communist political and moral system.

The excavation and retrieval of the many fallen civilians and soldiers that still lie in the soil of various Eastern European countries is a subject that one should treat with caution and the utmost respect, as one should with excavating any victims of human rights violations or any archaeological skeletal remains.  The Second World War is also still within living memory, as many individuals who fought and lived throughout the war are still alive themselves.

Therefore it is with some consternation, sadness and anger that I learnt about National Geographic Channel’s latest archaeology based program Nazi War Diggers, a particularly damaging show that promotes dubious ethical standards in the digging up and removal of human remains and WW2 era artefacts.  Many archaeology, metal detectorists and bioarchaeology bloggers have already helped highlight the fury that many feel on reading the preview information for the show, for the supposed ‘experts’ used in the show and for the footage that highlights the disrespectful removal and handling of human remains from a WW2 context.  A number of researchers have also highlighted the possible infringement of European legal standards and the likely illegal exportation and selling of WW2 artefacts by one of the show’s main presenters.  Further to this a number of institutions that should have been contacted and informed of the work beforehand (National Museums in Latvia and Poland, for example) have not been contacted or have been ignored when they tried to intervene.

Further to the above, as Dr Sam Hardy of Conflict Archaeology is currently documenting, in detail, an enlightening and frankly horrifying series of posts of the whole sorry charade.  National Geographic themselves have backtracked, removed public comments from their social media websites and have removed suspect and dubious video footage of the show from their online website (including the use of Neo-Nazi language during the unearthing of human remains).  This is frankly very disappointing behaviour.  National Geographic is a large organisation, one where the magazine, TV show, research foundation and online forms are all independent from each other but retain the National Geographic brand.  The Nazi War Diggers program is deeply disappointing and infuriating, as are the National Geographic responses to queries by specialists and non-specialists alike.

The companies involved in the making of this program include the following: the National Geographic television channel, Legenda (the specialist company used in the Latvia based digging), production company ClearStory and the Fox Entertainment Group.

The three presenters involved are not trained archaeological excavators or trained field anthropologists in the recording and removal of human remains, yet video footage explicitly shows the removal of human skeletal material from a war grave with the use of inappropriate and damaging tools, no recording of the context of the remains nor any respect or care taken in identifying the bone elements post immediate removal.  The principal three presenters of the show (Kris Rodgers, Stephen Taylor and Craig Gottlieb, alongside Adrian Kostromski) are curious choices to front such a show.  In particular Craig Gottlieb has a record for selling WW2 artefacts for profit and has stated in online websites that he has no problems getting artefacts past customs or finding artefacts to sell.  This raises all sorts of ethical problems and probable clashes of interest during his involvement with Nazi War Diggers.

Indeed Gottlieb had been quoted as saying: “(I) feel that by selling things that are Nazi related and for lots of money, I’m preserving a part of history that museums don’t want to bother with”.  A quote which was quickly retracted by the National Geographic Channel on their website.

The company behind the so-called excavation of human remains in WW2 contexts in Latvia, Legenda, have numerous Youtube videos up of their work – please be aware this is strictly not how trained archaeologists or anthropologists excavate and record human remains, especially those that likely still have living relatives.  As can be evidence in the videos no care or attention is paid to the remains uncovered, no ethics are abided by and no respect is paid to the fallen that have been uncovered.  It is some of the most upsetting scenes of desecration  of war graves that I have seen.  There must have been an awful lot of contextual information lost purely because of the approach used by Legenda.  Bear in mind that individuals from WW2 graves can often still be identified and returned to places of rest.  This will not be the case when desecration and destruction of evidence happens on a scale that is the outcome of the approach Legenda use (1).

For National Geographic to actively work with such companies and individuals is a shock, it disastrously promotes the profane practice of war grave robbing.  It is extremely disappointing and disturbing.  There are no other words to describe it.  Personally I having trouble articulating my thoughts on this subject because I am so surprised and disheartened that such a program could be made for entertainment purposes.  Furthermore it gives archaeology, bioarchaeology and human osteology a bad name when in fact these fields of study and inquiry are vital to understanding the people, the cultures and the landscapes of the past.  Quite proactively it seems that this is not the case with the Nazi War Diggers show.  I am also worried that this show will produce a monochrome view of the Eastern Front.  I am deeply worried that the individuals exhumed during the production of the show may be misidentified or cast aside.  I, for one, await evidence from National Geographic on the osteological reports and deposition of the skeletal remains excavated (excavation generally implies recording of the archaeological context, something that this show lacks) during the course of the show.

The website for the program (linked above) states that ‘misinformation’ has already been spread about the show, and that the show will explicitly state the difference in the work that it supposedly conducts and the work of ‘black digging’, i.e. grave robbing for the selling of artefacts.  Yet the damage has surely already been done by the way in which National Geographic has conducted the work already.  By associating with known sellers of WW2 relics, for profit, and by using companies that have a documented and explicit history of desecrating war graves, the National Geographic Channel has itself already condemned its own show from the start.  For me there is no argument – Nazi War Diggers is an abhorrent show, both morally and ethically.

A part of me cannot help but wonder what news the National Geographic Channel is holding back before the airing of Nazi War Diggers – will the show include the respectful identifying or re-burial of the individuals who have been dug up on the show, are the artefacts associated with WW2 contexts preserved, documented and stored in museums?  So far the news from the channel, the production company and the companies associated with the show do not provide hope in the methods that they been shown to have used.

I want to highlight something else though, something positive from an article that appeared in the BBC online magazine a few months ago, something that provides a different perspective on excavating and exhuming the individuals who died on the Eastern Front in WW2.

In a recent article Ash (2014) highlighted the work of the volunteers throughout the Russian Federation that have dedicated their time and efforts to locating and excavating the missing soldiers of the Red Army on the Eastern Front.  Documenting one such group, Exploration, which is one of a suspected 600 groups or so, the article details the work that they do in excavating, identifying and re-burying the Soviet war dead of WW2.  In contrast to the above show by the National Geographic Channel, the Exploration group have had some success in carefully excavating, recording and identifying the individuals that they have uncovered where they fell, during the German offensive code named Operation Barbarossa, in the forests around St Petersburg (formerly known as Leningrad).

Intriguingly there is evidence of the cover up of the graves in this area during the 1950s and 1960s by the communist regime, by planting trees to help cover the physical remains of battle and thus prohibit any chance discovery.  The priority was instead to re-build a shattered country.  The largely independent volunteer groups described in the BBC article receive no initial help in recovering the bodies of the fallen, but do seem to be able to help fund an honourable reburial once documenting, recording and removal of the bodies have taken place, although it is unclear to me if the Russian Federation provides funding or materials for this.  Importantly it is by giving back the unknown soldiers their identifies (if they can be identified by their ID tags or personal belongings) that the volunteer groups are able to bring closure to some families today by helping to return and re-unite long lost loved individuals.

In a quick last mention, I recently received a copy of Clea Koff’s book The Bone Woman in the post, a book detailing the forensic anthropologist’s work with the United Nations in helping to exhume and identify modern victims of genocide.  The book has a particular focus on her work in Rwanda, Bosnia, Kosovo and Croatia, detailing the information that her team helped to collect and recover and how it was used in trials against the people who helped order or carry out the killings in these countries in the 1990s.  It was on reading Osteoadventures post on the National Geographic debacle that I came across Koff’s book, and I highly recommend giving it a read.  There are many many people, both individuals and organisations worldwide, that conduct thorough investigations into human rights violations (such as recovering evidence and human remains from genocide contexts or discovering and investigating clandestine graves) that deserve our support and acknowledgement.  The National Geographic Channel’s Nazi War Diggers program is not among these.  The damage that the show has already caused, in part evidenced above, should be protested against.  Human remains deserve better treatment.

Update 01/04/14

According to the New York Times (via Dr Sam Hardy) the National Geographic Channel has pulled the Nazi War Diggers program indefinitely.


(1). Once again Dr Sam Hardy has updated his excellent blog with some salient remarks regarding Legenda and their techniques.  In particular he highlights the fact that the people behind the company want to help and that, at times, they cannot do as much of a professional job as one would hope.  This does not excuse all of their actions in the videos linked to above, but it does explain some to a degree.  I heartily recommend readers to check Dr Hardy’s blog for regular updates on the situation and for further information.

Further Reading

  • Dr Sam Hardy regularly investigates and updates his blog, Conflict Antiquities, on this matter and many others.
  • Sign a petition here to stop the airing of the show.
  • Bodies and Academia has highlighted a range of responses from the archaeology blogging world.


Applebaum, A. 2013. Iron Curtain: The Crushing of Eastern Europe. London: Penguin Books.

Ash, L. 2014. Digging For Their Lives: Russia’s Volunteer Body Hunters. BBC Online Magazine.

Merridale, C. 2013. Red Fortress: The Secret Heart of Russia’s History. London: Allen Lane.

Grave Matters: Archaeology & Politics

2 Aug

Archaeology and politics are often uncomfortable bedfellows, perhaps more so than many archaeologists like to admit.  This, it is fair to say, is especially the case when dealing with the issue of human remains in either prehistoric or historical instances.  However archaeological sites are never ‘static’ shots of one particular time, but rather often act as an accumulation of an extended period of time, compacted into the earth for the archaeologist to decipher.  They neither belong fully to the past, nor fully to the present.  Further to this we (the archaeologists) don’t just view and interpret an archaeological site from a historical (or prehistorical) vantage point, we necessarily (and often subconsciously) filter the evidence present through our own life experiences, professional knowledge and socio-cultural factors.  Whilst this post could go off on a theoretical tangent here, I will keep it cogent to this point alone: human bodily and skeletal remains are an emotive subject, especially when archaeology and politics mix.  So bearing this in mind, here are several examples where politics meets the trowels edge, often resulting in friction between the two.

The Spitalfields cemetery (possible one of the largest excavated in the world with just under 11,000 burials excavated) will long be remembered in the human osteological circles of Britain as an exceptional excavation.  It is site of such osteoarchaeological and social historical wealth that it has to be one of the most documented cemetery excavations carried out in Britain, if not the world for its richness of remains and evidence for the social context that the individuals inhabited (Pethen 2010).  A report on the archaeological and historical background of the area can be read here, detailing the wealth of Roman, Medieval and Early Modern archaeological finds and cemetery sites (Elders et al. 2010).  The Spitalfields area itself is a site of beauty, a breath of fresh air in a crowded city, with the beautiful baroque Christ Church dominating the area near its centre.

In a letter in the recent edition of Private Eye (Issue 1345)  a reader has wrote of the proposed school extension of the Christ Church primary school onto the Spitalfields graveyard.  This is due to a severe over-crowding of the school in an area where local council authorities have been banned from opening new state schools, unless they are to be built as an academy.  Academies are another feature of the unpopular UK Secretary of State for Education Michael Gove’s educational reforms, which operate from central government funds and dictate their own curriculum, although they (and Gove’s other reform ideas) have come under sustained attack from numerous teaching unions and local authorities for distorting choice, spoiling funds and promoting the teaching of creationism.  A campaign to stop the school development can be found here, but I would caution that the school may have little choice in the matter.


A section of the Medieval cemetery excavated at St Mary Spital burial ground highlighting the closeness of the buried individuals. In particular note the overlaying of the bodies, highlighting the fact that they had not been buried in coffins. This is not the Spitalfields site but reminiscent of similar burial traditions within medieval London (Source: Current Archaeology 2012).

Meanwhile in Zimbabwe, in southern Africa, the ruling party Zanu-PF have likely won again following recent 2013 elections (1).  The incumbent president, Robert Mugabe, has remained in power following 30 years of rule despite continued disputed election results in recent years and statistically dubious polls, with a large number of deceased individuals being named as voters on the recent polling lists.  Zanu-PF have often used underhand methods to maintain power before in the country, which is still currently edging out of a deep recession which had seen currency hyperinflation, including voter intimidation, forced removal and sustained campaigns of violence.  Yet in 2008 a power brokerage deal was agreed with the opposition party, the MDC, led by Morgan Tsvangirai, who has joined the government as Zimbabwe’s prime minister.

Grisly news articles broke in early 2011 when it was reported that over 600 human bodies (possibly thousands) in various states of decay had been found in various mine shafts at Chimbondo, near Mount Darwin, in northern Zimbabwe.  A large portion of the bodies found have been removed from context and buried elsewhere, but others remain in-situ.  Claims abound from sources inside Zimbabwe that they represent victims of the colonial period (from Zimbabwe’s War of Independence), whilst other governments and opposition parties have questioned whether they are instead the victims of Zanu-PF’s sustained campaigns of intimidation and violence.  Various news reports have suggested that the bodies have been known about for a number of years, and that individuals still had bodily fluids or soft flesh attached, or leaking from, their bodies.  Amnesty International have called for forensic experts to have access to the mass graves to carry out detailed forensic investigative tests to assess the demography of the mass graves, age and sex the bodies and positively ID individuals, by carrying out DNA studies, if possible (Jurmain et al. 2011: 22).

Yet despite repeated calls for access from Amnesty International and other organisations and governments from around the world, none is forthcoming or has been granted from the Zanu-PF led government of Zimbabwe (Amnesty International 2011).  The victims remain potent symbols of political propaganda, whilst their individual identities themselves are being disregarded.  By refusing to identify individuals and profile the dead, the authorities in Zimbabwe are helping to undermine the individuals themselves and the families who have lost loved ones, regardless of whether they died in the independence war or as a result of the discord and violence post-independence.  This makes the political parties implicit with guilt.

zimbabwe 2011massgrave

Unidentified individuals found in the 2011 mass graves in northern Zimbabwe. The conditions of the clothes and of the bodies, from this site and others, indicate the possibility that the victims were killed post-War of Independence. (Source: Daily Mail 2011).

In Florida, in the USA, there has been recent upset and outrage over the refusal (still as of early August 2013) for permission to be granted to a team of forensic anthropologists from the University of South Florida to excavate and help identify suspected abuse victims from a 1930’s onwards reform school in Mariana, northern Florida.  This is despite the results of ground penetrating radar surveys conducted on a suspected cemetery site at the Mariana campus of the Dozier School For Boys, which reportedly found evidence for 50 suspected graves, a far larger percentage then previously thought or suspected (Hennig 2012).  Rick Scott, the current Florida Governor, has disagreed with the forensic anthropologists over the exhumation of the graves, citing that the University team do not have the legal requirements to excavate the remains.  This has been met with outrage from families and survivors of the reform school, with one predominant group nicknamed the White House Boys who urgently want answers on how many people died at the school through abuse.  Outrage has also been picked up on a larger scale across the US, with Senator Bill Nelson decrying the ridiculous stance the state of Florida has taken on the issue.

The US has fairly tough laws on the excavation of human remains, be they historical or prehistoric, with tough guidelines and stringent checks enforced through the NAGPRA (Native American Graves Protection and Repatriation Act) laws.  However, even allowing for the complexities of US legal requirements for the exhumation of human remains, the reform school investigation and associated problems in excavating possible abuse victims seems especially convoluted, with state departments blaming each other for the confusion.  Rick Scott does has form for his distaste for all things anthropological, stating that anthropology is not needed in Florida.  Somewhat of an oversight when the state is home to many important archaeological sites and osteological collections (Windover, for instance).  News is to follow as to whether Rick Scott will give in to the families and researchers demands to let the forensic anthropologists to exhume the remains, with a vote set for Tuesday (13th August 2013) (2) (3) (4) (5).  Since the original writing of this post the decision was taken for anthropologists to investigate and exhume the bodies.  This continues currently, and has fruitfully positively identified a number of the young individuals who were tortured and buried at the location of the reform school.  Graves have also been found outside of the regular cemetery, suggesting that ad-hoc burials took place.

braziers school

The Doziers school for Boys were the abuse was alleged to have taken place. (Source: Daily Mail 2012).

Upon reading this entry you may think that politics and archaeology are at best awkward partners paired up only when necessary, but the great thing about archaeology and anthropology is that they implicitly depend on inter-disciplinary research projects across national borders, continents and cultures.  There are success stories of how well archaeology has been implemented in national and political guidelines (the UK for instance has a strict and often well observed set of heritage and archaeological guidelines for developers) but, for this post at least, it is necessary to highlight how government obstructions and human remains are often used as political weapons in modern contexts.

(1) 04/08/13 update: Latest news reveal Mugabe and Zanu-PF have indeed won the election.

(2) 07/08/13 update: According to the Tampa Bay Times, the Florida Cabinet has agreed to let USF researchers exhume the individuals at the Dozier reform school.  This will mean that living families and relatives of individuals who died at the school could finally get some answers and evidence on individuals who were buried at the school.  Excavations will start later this month.

(3) 01/09/13 update: The Guardian and other news sources have reported the first details of the excavation at the Dozier reform school, with finds already including funerary artefacts such as coffin fittings and human skeletal material.

(4) 07/08/14 update: Positive identification of some of the victims of the Dozier reform school in Florida has now been announced.  Strange Remains has an update detailing the use of DNA from victims families in the positive identification of skeletons that have been excavated from clandestine burials dating to the 1940’s.  Distressingly there may be further burials located within the Dozier reform school grounds.

(5) 04/10/14 update: The positive identification of two further victims of the Dozier reform school, in the panhandle of Florida, have been announced.  Strange Remains has an update on the identification of two of the boys found in graves at school by anthropologists at the University of South Florida, highlighting the abuse and neglect that was unchecked at the reform school.

(6) 01/012/15 updated: I have mistakenly referred to the incorrect burial ground for Spitalfields, please see the informed comments from CH below.  The post will be updated shortly to reflect the correct London post-medieval burial ground discussed.


Amnesty International. 2011. Zimbabwe: Mass Graves Must Be Exhumed by Forensic Experts. Amnesty International Press Release.

Elders, J. et al. 2010. Archaeology and Burial Vaults: Guidance Notes for Churches. Council for British Archaeology: York.

Hennig, K. 2012. Searching For Answers. University of Southern Florida: Tampa.

Jurmain, R. Kilgore, L. & Trevathan, W.  2011. Essentials of Physical Anthropology International Edition. London: Wadworth.

Pethen, H. 2010. Christchurch Spitalfields CE Primary School, Commercial Street, London E1: Historic Environment Assessment. Museum of London Archaeology: London.