Archive | Bone Basics! RSS feed for this section

Reflection During a Day of Skeletal Processing

8 Feb

I have a day off from my normal job and I find myself carefully wet sieving the cremated remains of a suspected Romano-British individual in the processing room at the local unit, but I’m not alone here.  Instead I’m surrounded by recently excavated Anglo-Saxon remains drying slowly on paper towels, organised in numerous plastic trays on various shelves to my side and up above me.  In each tray there is a plastic zip bag, the site code and context number inked on for identification purpose and later site reconstruction.  By taking the right femoral head and neck (upper thigh) as an identifier of the minimum number of individuals (MNI), I count at least six individuals represented in the new assemblage, although there are a few trays I cannot quite see and as I am not here to look at them I do not uncover them.  A quick look at the morphology (size and shape) of the individual skeletal elements is enough to see that, demographically speaking, adults and non-adults are represented in the assemblage.

Browsing the mandibles (lower jaw) that are present I can see a few without the 3rd molar fully erupted, one or two lying in crypts waiting to reach up for the shaft of light from the outside world that would never come.  Another mandible has the majority of the teeth present, including the 1st, 2nd and 3rd molars in each half, but displays severe enamel wear of the crowns of the teeth (the occlusal, or biting surface), indicative of a rough diet and probable middle to advanced adult age.  The fact that most of the teeth are present suggest that the individual wasn’t too old though, as tooth loss is strongly correlated to increasing age for humans.

cnv00033

A day in the archive stores analysing non-adult skeletal remains from an archaeological site. Photograph by the author use a Pentax ME Super camera and Lomography Lady Grey film, if used elsewhere please inform the author and credit as appropriate.

I turn my attention back to the cremated remains.  These are something of a mystery having looked at the context sheets dating from the excavation itself.  There is evidence for cremated non-human remains, likely to be bovine (cow to you and me) as there are a few distinctive teeth included in the bags in an associated context found near the cremated remains that I’m now processing, which itself has been bulk sampled at 100%.  A proper look through the sieved cremated material, which has been processed in accordance with the British Association of Biological Anthropology and Osteoarchaeology guidelines, will have to wait though as they need to dry over the next few days, ideally for another few days after too.  Once dry I can go through each fraction sieved (10mm, 6mm, 2mm) and sort as human and non-human, before identifying specific osteological features and assigning the fragments to either skull, limb, or trunk sections of the skeleton.

As I think about this I remember that I must complete this human osteology report soon.

For many people the thought of touching or analyzing human remains is too much, that in many minds remains are parceled off to the medical realm or are hurried to the cemetery to be removed out of sight.  In reality though we are often surrounded by human remains, though we may not always know it and may not always want to know it.  In archaeology the skeletal remains of humans are often the only direct biological matter to survive of individuals and past populations.  They can encode and preserve a lot of information on biological matters and past cultural practices.  This has been steadily recognized within the past century as osteological methodologies are refined for accuracy and new technology is applied in novel approaches to the remains unearthed.  One of the prime concerns for any bioarchaeologist or human osteologist is that ethical codes and guidelines are adhered to, with the relevant legal permits acquired as appropriate.  As I glance upon the presumed Anglo-Saxon remains I remember that these too were unexpected finds by the construction workers, I briefly wonder how they felt and what they thought on seeing them for the first time.

Anyhow, back to processing the cremation and to thinking about writing the report.

It is pretty interesting as although I’ve part-processed cremations within urns before, with careful micro-excavation spit by spit, I’ve never fully processed a cremation to completion.  Whether these cremated remains represent human skeletal material, as the field notes state, remains a different matter though and it is one I am eager to solve…

Further Learning

  • The British Association of Biological Anthropology and Osteoarchaeology (BABAO) promotes the study of understanding the ‘physical development of the human species from the past to the present’.  As an association they provide research grants for projects in which all members of BABAO are eligible, as well as offering prizes for presentations and posters in their annual conference, which is held in the United Kingdom.  I fully recommend attending and taking part if you are associated with any relevant field.
Advertisements

Upcoming: Zooarchaeology and Human & Non-Human Comparative Osteology Short Courses at the University of Sheffield, September 2016

21 May

I recently had the great joy of once again visiting Sheffield to catch up with old friends and to see the Steel City anew.  It was strange, as it always is, to visit the city where I was once a student, where during the year I was a resident and cramming to complete the Masters in human osteology I was now just a tourist on holiday.  I was able to relax and browse record stores and bookstores without the guilt of an upcoming Bone Quiz hanging in the back of my mind.  One thing I hadn’t quite missed though was the hills of the city, but my love for the trams was rekindled and I managed to avoid the steepest of slopes with relative ease.

Whilst there I also managed to catch the thought-provoking film Anomalisa, direct by Charlie Kaufman, at the University of Sheffield Student Union in a night ran by the film society.  The society do fantastic work screening relatively recently released films on a Friday, Saturday and Sunday night at affordable prices for the general public and student body alike.  It is definitely worth checking out.  I also shared pints with friends who had stayed or moved to Sheffield to pursue the great archaeological career.

It was great to catch up on the latest news from the commercial and academic spheres, to hear of the sites that my friends had dug at or to hear of the community projects they were involved in.  Over a black coffee in the sweltering sun I was reminded by my good friend Lenny Salvagno that the Department of Archaeology, at the University of Sheffield, is organizing a number of new osteology short courses.  The short courses are taking place in September 2016 and will be of interest to readers of this blog.  So without further ado let us get to it…

Animal Remains: An Introduction to Zooarchaeology

The Understanding Zooarchaeology I short course will run for the eleventh time on the 12th to 14th September 2016, for the price of £180 or £120 (student/unwaged).  Animal bones and teeth are among the most common remains found on archaeological sites, and this three-day course will provide participants with an understanding of the basic methods that zooarchaeologists use to understand animal bone evidence.  The course will introduce the principles and basic topics behind the zooarchaeological analysis of skeletal animals in the archaeological record, including specific focuses on avian, amphibian, reptilian and mammalian skeletal remains.

This includes not just the recognition of these animal groups and their basic skeletal anatomy but also how the zooarchaeological analyses the remains (such as age at death indicators and the recognition of skeletal pathologies) and the methodologies used in assessing the role of animals in the past.  It’ll also introduce factors that affect the remains post-burial and best practice strategies for the long-term storage of remains uncovered.  The three-day course will end with sessions on skeletal metric analysis, biomolecular techniques used in zooarchaeology (such as stable isotopic analysis), quantification of the material, and finally the role of bone modification in the study of animal remains.

sheff zooarch

Beasts of a future past. Utilizing the extensive collection of animal skeletal remains from the osteology laboratory, the zooarchaeology short course attendees will get to know the basic anatomical teminology, recognition and differences between species. Image credit: University of Sheffield, Department of Archaeology.

A Comparative Analysis: Human and Non-Human

This introductory course will be followed by a new course, entitled Human and Animal Remains: A Comparative Approach, the first time that such a course has been ran at the department.  This short course runs from the 15th to 16th September 2016 for the price of £180 or £120 (student/unwaged) and will focus on a comparison of the skeletal anatomy between human and non-human animal species commonly found from archaeological contexts in northern Europe.  By using both macroscopic and microscopic analyses, along with an insight into biomolecular investigations, the course will illustrate some basic tools used in distinguishing human remains from those of other animals.  Different methodologies and research approaches that characterize the different disciplines of human osteoarchaeology, zooarchaeology and forensic science will be discussed and evaulated.

sheff zoo arch

Bridging the comparative osteology divide. The comparative human and non-human short course brings together the knowledge of human and animal skeletal specialists to compare and contrast methods of analysis from archaeological populations. Image credit: University of Sheffield, Department of Archaeology.

Both the three-day long Understanding Zooarchaeology I and two-day long Human and Animal Remains: A Comparative Approach short courses are aimed at students, professionals in the archaeological sector and general enthusiasts.  The courses do not require any previous knowledge of the discipline and the general public are thoroughly welcome to attend.  The teaching in both courses will be delivered through short lectures, hands-on practical activities and case studies.  You can also attend both of the courses from the 12th to 16th September 2016 for the price of £220/£330 (student/unwaged), which means that you are able to save if you are interested in both.

Not Opposites, Complements

To study the skeletal remains of human or of animals, human or non-human, that is the choice that prospective students are often faced with in the realm of higher study in order to specialize in osteoarchaeology.  Yet it is widely known that human osteology is, on a commercial archaeological level, a saturated place.  The story in academia is the same.  Competition is fierce for both funding and for places in programs.

But human osteology and zooarchaeology are not polar opposites and never should be.  The human osteologist, bioarchaeologist, or forensic anthropologist, needs a good and solid grounding in the morphological differences and variations present in both human and non-human skeletal remains.  As does the zooarchaeologist, especially when faced with commingled and multi-species contexts that can be, and often are, found within archaeological sites.  It is to the advantage of the individual to be either be multi-skilled in the analysis of human and non-human skeletal remains, or to at least be au fait with what to expect with osseous material from archaeological contexts.  Therefore short courses, such as those that are mentioned above, are advantageous to each participant and to the archaeological sector as a whole.

Further Information

  • As always I am more than happy to advertise any upcoming human osteological and zooarchaeological short courses in the United Kingdom on this blog.  Please do leave a comment on email me (see my email address in the About page) and let me know the details of the upcoming course and I’ll add a post about it.

Skeletal Series: The Basic Human Osteology Glossary

19 Dec

Introducing the Human Osteology Glossary

It is important for the budding human osteology student that they understand and correctly apply the basic terms used in the discipline to help identify and describe the skeletal anatomy under study.  Since human osteologists study the skeletal remains of anatomically modern humans (Homo sapiens) the terminology used, specifically the anatomical terminology, has to be precise and correct as befitting the medical use of such terms.

Human osteology remains the foundation on which the disciplines of forensic anthropology and bioarchaeology are built upon, although it is noted that the disciplines can be misleading across international divides.  For example, in the United Kingdom bioarchaeology is still used to refer to the study of both human and non-human skeleton remains from archaeological sites, whilst bioarchaeology in the United States normally refers to human remains only.  It should also be noted here that the other related disciplines, such as palaeoanthropology and biological anthropology, study not just the modern human skeleton but also the skeletal and fossilized remains of extant (genera such as Pan, Pongo and Gorilla) and extinct hominins.  Nevertheless the terminology remains the same when describing the skeletal anatomy of both human and non-human individuals.

Glossary Arrangement

This short glossary is intended to provide a basic introduction to the terminology used in the disciplines that utilizes human osteology as a core focus for the research undertaken.  The terminology documented here also includes a brief description of the word and, where possible, an example of its use.  Primarily the glossary acts as a reference post in order to be used in conjunction with the Skeletal Series posts on this site, which help outline and introduce each skeletal element of the human body section by section and as appropriate.  However please note that the glossary is also arranged in a manner in which it befits the student who needs to quickly scan the list in order to find a specific and relevant word.

Therefore the glossary is arranged in a thematic presentation as follows:

1. Discipline Definitions
2. The Human Body:
– a) Macro
– b) Micro
– c) Growth
– d) Disease and Trauma
3. Anatomical Foundations:
– a) Anatomical Planes of Reference
– b) Directional Terminology
– c) Movement Terminology
4. Postmortem Skeletal Change
– a) Postmortem Skeletal Change

The glossary ends with an introduction to the terminology used to describe the postmortem aspects of body deposition.  This is because it is an important aspect and consideration of any skeletal analysis undertaken.  The terminology used in this section leads away from the strictly anatomical terminology of the sections above it and introduces some terms that are used in archaeology and associated disciplines.

Reference Note

Please note that the bibliography provided indicates a number of important texts from which this glossary was compiled.  The key text books highlighted also introduce the study of the human skeleton, from a number of different perspectives, including the gross anatomical, bioarchaeological and human evolutionary perspectives.  Find a copy of the books at your library or order a copy and become engrossed in the beauty of the bones and the evidence of life histories that they can hold.

The Glossary:

1) – Discipline Definitions

Bioanthropology:  A scientific discipline concerned with the biological and behavioral aspects of human beings, their related non-human primates, such as gorillas and chimpanzees, and their extinct hominin ancestors.  (Related Physical Anthropology).

Bioarchaeology:  The study of human and non-human skeletal remains from archaeological sites.  In the United States of America this term is used solely for the study of human skeletal remains from archaeological sites.

Forensic Anthropology:  An applied anthropological approach dealing with human remains in legal contexts.  Forensic anthropologists often work with coroners and others, such as disaster victim identification teams, in analysing and identifying human remains (both soft and hard tissues) from a variety of contexts including but not limited ID’ing remains from natural disasters, police contexts, war zones, genocides, human rights violations, etc.

Human Osteology:  The study of human skeletal material.  Focuses on the scientific interpretation of skeletal remains from archaeological sites, including the study of the skeletal anatomy, bone physiology, and the growth and development of the skeleton itself.   

Palaeoanthropology:  The interdisciplinary study of earlier hominins.  This includes the study of their chronology, physical structure and skeletal anatomy, archaeological remains, geographic spans, etc. (Jurmain et al. 2011).

Physical Anthropology:  Concerned with the biological skeletal remains of both humans and extant and extinct hominins, anatomy, and evidence of behaviour.  The discipline is often considered congruent with the term bioanthropology, or biological anthropology.  (Related Bioanthropology).

2) a. – The Human Body: Macro

Appendicular Skeleton:  The skeletal bones of the limbs.  Includes the shoulder and pelvic girdles, however it does not include the sacrum.  Skeleton SK423 largely consisted of the non-fragmented disarticulated appendicular elements.

Axial Skeleton:  The skeletal elements of the trunk of the body.  Includes the ribs, vertebrae and sternum.  The body of SK424 was particularly fragmented in-situ, with little sign of excavation or post-excavation damage evidenced on the axial skeleton suggesting fragmentation post-burial.

Cortical (Compact) Bone:  The solid and dense bone found in the bone shafts and on the external surfaces of bone itself.  The cortical bone of the mid-shaft of the right humerus of the tennis player displayed increased thickening.  This is, in this individuals case whose physical history is known, due to the predominance of the right arm during intense and long-term use in physical exercise (see Wolff’s Law). 

Dentin (Dentine):  Calcified but slightly resilient dental connective tissue.  In human growth primary dentin appears during growth whereas secondary dentin forms after the root formation of the tooth is complete (White & Folkens 2005: 421).

Diaphysis:  The shaft portion of a long bone.  The diaphysis of the femur is one of the longest shafts found in the human skeleton, as the femur is the longest bone.

Dry Bone:  Refers to archaeological bone where no soft, or wet, tissue survives, hence the bone is dry.  It should be noted that, when subject to x-rays for investigation, archaeological dry bone radiological images are improved due to a lack of soft tissues obscuring the bone condition.

Elements (Skeletal):  Used to refer to each individual bone.  The human adult body has, on average, 206 individual skeletal elements.

Enamel:  Enamel is an extremely hard brittle material which covers the crown of a tooth.

Endosteum:  A largely cellular membrane that lines the inner surface of bones which is ill-defined (White & Folkens 2005: 421).

Epiphysis:  The epiphysis refers to the often proximal and distal ‘caps’ of long bones that develop from a secondary ossification centre.  The epiphysis of the long bones can, when used in conjunction with other skeletal markers of aging, particularly dentition, provide a highly accurate  age-at-death in non-adult human skeletal remains.

Medullary Cavity:  The cavity found inside the shaft of a long bone.  The medullary cavity of the femur is the site of the longest medullary cavity found in the human body.  The medullary cavity is the location where red and yellow bone marrow is stored and where the red and white blood cells are produced. 

Metaphyses:  The metaphyses refer to the expanded and flared ends of the shaft (or diaphysis) of long bones.  Both the femoral and humeral diaphyses display flared distal metaphyses which are indicative of their anatomical positioning.

Morphology:  The form and structure of an object.  The morphology of the femora is dictated by a variety of factors, not least the size, age, sex and weight of the individual.

Musculoskeletal System:  The musculoskeletal system provides the bony framework of the body in which the muscles attach onto and are able to leverage bones to induce movement.  The musculoskeletal system is responsible for a number of core bodily functions, including blood production and nourishment, alongside providing a stable and safe environment for vital organs.

Osteology:  The scientific study of bone.  Bones form the basis of the skeletal system of vertebrate animals, including humans.  In the United States of America bioarchaeology refers to the study of human bones within an archaeological context.

Periosteum:  The thin dense vascular connective tissue that covers the outer surfaces of bone during life, except on areas of articulation.  The periosteum tissue plays an important part in the maintenance of healthy bone, helping to also provide the body with blood via the bone marrow and associated vessels.  The periosteum provides an important area of osteogensis following a bone fracture.

Postcranial Skeleton:  All bones but the mandible and cranium.  The postcranial skeleton of SK543 was exceptionally well-preserved within the grave context but due to grave cutting the cranium and mandible were completely disturbed and not present within the context recorded.

Trabecular (Spongy) Bone:  Refers to the honeycomb like structure of bone found within the cavity of bones themselves.

2) b. – The Human Body: Micro

Cartilage:  Cartilage is a flexible connective tissue which consists of cells embedded in a matrix.  In the human skeletal system cartilage is found between joints, such as the knee and in forms such as the intervertebral disk in the spine and in the ribcage.  There are three types of cartilage: hyaline, fibrocartilage and elastic cartilage in the human skeletal system, although 28 different types of cartilage have now been identified in the human body as a whole (Gosling et al. 2008:9).

Collagen:  Collagen is a fibrous structural tissue in the skeleton which constitutes up to 90% of bone’s organic content (White & Folkens 2005: 42).

Haversian Canal (Secondary Osteons):  Microscopic canals found in compact, or cortical, bone that contain blood, nerve and lymph vessels, alongside marrow.

Hydroxyapatite:  A dense, inorganic, mineral matrix which helps form the second component of bone.  Together with collagen hydroxyapatite gives bone the unique ability to withstand and respond to physical stresses.

Lamellar (Mature) Bone:  Bone in which the ‘microscopic structure is characterized by collagen fibres arranged in layers or sheets around Haversian canals’ (White & Folkens 2005: 423).  Lamellar bone is mechanically strong.  Related woven (immature) bone.

Osteoblast:  Osteoblasts are the ‘bone-forming cells which are responsible for synthesizing and depositing bone material’ (White & Folkens 2005: 424).

Osteoclast:  Osteoclasts are the cells responsible for the resorption of bone tissue.

Osteocyte:  Osteocytes are the living bone cell which is developed from an osteoblast (White & Folkens 2005: 424).

Osteon:  The osteon is a Haversian system, ‘a structural unit of compact bone composed of a central vascular (Haversian) canal and the concentric lamellae surrounding it; a Primary Osteon is composed of a vascular canal without a cement line, whereas the cement line and lamellar bone organized around the central canal characterize a Secondary Osteon‘ (White & Folkens 2005: 424).

Remodeling:  Remodeling is the cyclical process of bone resorption and bone deposition at one site.  The human skeleton continually remodels itself throughout life, and after full growth has been achieved towards the end of puberty.  Further to this bone is a tissue that responds to physical stress and remodels as appropriate. 

Woven (Immature) Bone:  characterized by the haphazard organisation of collagen fibres.  Primarily laid down following a fracture and later replaced by lamellar bone.  Woven bone is mechanically weak.  Related lamellar (mature) bone.

2) c. – The Human Body: Growth

Appositional Growth:  The process by which old bone that lines the medullary cavity is reabsorbed and new bone tissue is grown beneath the periosteum, which increases the bone diameter.

Endochondral Ossification:  One of two main processes of bone development in which cartilage precursors (called cartilage models) are gradually replaced by bone tissue (White & Folkens 2005: 421).

Epiphyseal (Growth) Plate:  The hyaline cartilage plate found at the metaphyses of the long bones during growth of the individual (i.e. non-adults), where bone growth is focused until full growth cycle has been completed.

Idiosyncratic:  Referring to the individual.  The normal morphology of the human skeleton, and its individual elements, is influenced by three main factors of variation: biological sex (sexual dimorphism), ontogenetic (age), and idiosyncratic (individual) factors.

Intramembranous Ossification:  One of two main processes of ‘bone development in which bones ossify by apposition on tissue within an embryonic connective tissue membrane’ (White & Folkens 2005: 422).

Ontogeny:  The growth, or development, of an individual.  Ontogeny can be a major factor in the morphological presentation of the human skeleton.

Osteogenesis:  The formation and development of bone.  Embryologically the development of bone ossification occurs during two main processes: intramembranous and endochondral ossification.

Wolff’s Law:  Theory developed by German anatomist and surgeon Julius Wolff (1836-1902) which stated that human and non-human bone responded to the loads, or stresses, under to which it is placed and remodels appropriately within a healthy individual.

Sexual Dimorphism:  The differences between males and females.  The human skeleton has, compared to some animal species, discrete differences in sexual dimorphism; however there are distinct functional differences in the morphology of certain elements which can be used to determine biological sex of the individual post-puberty.

2) d. – The Human Body: Disease and Trauma

Atrophy:  The wastage of an organ or body tissue due to non-use.  Atrophy can be an outcome of disease processes in which the nerves are damaged, leading to the extended, or permanent, non-use of a limb which can lead to muscle wastage and bone resorption.

Blastic Lesion: Expansive bone lesion in which bone is abnormally expanded upon as part of part of a disease process.  The opposite of lytic lesion.

Calculus: Tartar; a deposit of calcified dental plaque on the surface of teeth.  The calculus found on the teeth of the archaeological skeleton can contain a wealth of information on the diet and extramasticatory activities of the individual.

Callus:  The hard tissue which is formed in the osteogenic (bone cell producing) layer of the periosteum as a fracture repair tissue.  This tissue is normally replaced by woven bone, which is in turn replaced by lamellar (or mature) bone as the bone continues to remodel during the healing process.

Caries:  Caries are ‘a disease characterized by the ‘progressive decalcification of enamel or dentine; the hole or cavity left by such decay’ (White & Folkens 2005: 420).  The extensive caries present on the 2nd right mandibular molar of Sk344 nearly obliterates the occlusal (chewing) surface of the tooth.

Compound Fracture:  A fracture in which the broken ends of the bone perforate the skin.  A compound fracture can be more damaging psychologically to the individual, due to the sight of the fracture itself and soft tissue damage to the skin and muscle.  Compound fractures also lead to an increased risk of fat embolism (or clots) entering the circulatory system via marrow leakage, which can be potentially fatal.

Dysplasia:  The abnormal development of bone tissue.  The bone lesions of fibrous dysplasia display as opaque and translucent patches compared to normal healthy bone on X-ray radiographic images.

Eburnation: Presents as polished bone on surface joints where subchondral bone has been exposed and worn.  Osteoarthritis often presents at the hip and knee joints where eburnation is present on the proximal femoral head and distal femoral condyle surfaces, alongside the adjacent tibia and iliac joint surfaces.

Hyperostosis:  An abnormal growth of the bone tissue.  Paget’s disease of bone is partly characterized by the hyperostosis of the cranial plates, with particularly dense parietal and frontal bones.

Hyperplasia:  An excessive growth of bone, or other, tissues.

Hypertrothy:  An increase in the volume of a tissue or organ.

Hypoplasia:  An insufficient growth of bone or other tissue.  Harris lines are dense transverse lines found in the shafts of long bones, which are indicative of arrested growth periods, as non-specific stress events, in the life of the individual.  Harris lines can often only be identified via X-ray radiography or through visual inspection of internal bone structure.

Lytic Lesion:  Destructive bone lesion as part of a disease process.  The opposite of a blastic lesion.  Syphilitic lytic bone lesions often pit and scar the frontal, parietal and associated facial bones of the skull.

Osteoarthritis:  Osteoarthritis is the most common form of arthritis, which is characterized by the destruction of the articular cartilage in a joint.  This often leads to eburnation on the bone surface.  Bony lipping and spur formation often also occur adjacent to the joint.  This is also commonly called Degenerative Joint Disease (DJD) (White & Folkens 2005: 424).

Osteophytes:  Typically small abnormal outgrowths of bone which are found at the articular surface of the bone as a feature of osteoarthritis.  Extensive osteophytic lipping was noted on the anterior portion of the vertebrae bodies of T2-L3 which, along with the evidence of eburnation, bony lipping and spurs presenting bilaterally on the femora and tibiae, present as evidence of osteoarthritis in SK469.

Pathognomonic:  A pathological feature that is characteristic for a particular disease as it is a marked intensification for a diagnostic sign or symptom.  A sequestrum (a piece of dead bone that has become separated from normal, or healthy, bone during necrosis) is normally considered a pathgonomic sign of osteomyelitis. 

Pathological Fracture:  A bone fracture that occurs due to the result of bones already being weakened by other pathological or metabolic conditions, such as osteoporosis (White & Folkens 2005: 424).

Palaeopathology:  The study of ancient disease and trauma processes in human skeletal (or mummified) remains from archaeological sites.  Includes the diagnosis of disease, where possible.  A palaeopathological analysis of the skeletal remains of individuals from the archaeological record is an important aspect of recording and contextualising health in the past.

Periodontitis:  Inflammation around the tissues of a tooth, which can involve the hard tissues of the mandibular and maxilla bone or the soft tissues themselves.  Extensive evidence of periodontitis on both the mandible and maxilla suggests a high level of chronic infection.

Periostitis: The inflammation of the periosteum which is caused by either trauma or infection, this can be either acute or chronic.  The anterior proximal third of the right tibia displayed extensive periostitis suggesting an a persistent, or long term, incidence of infection.

Radiograph:  Image produced on photographic film when exposed to x-rays passing through an object (White & Folkens 2005: 425).  The radiographic image of the femora produced evidence of Harris lines which were not visible on the visual inspection of the bones.

3) a. – Anatomical Planes of Reference

Anatomical Position (Standard):  This is defined as ‘standing with the feet together and pointing forward, looking forward, with none of the leg bones crossed from a viewer’s perspective and palms facing forward’ (White & Folkens 2005: 426).  The standard anatomical position is used when referring to the planes of reference, and for orientation and laying out of the skeletal remains of an individual for osteological examination, inventory, and/or analysis.

Coronal (frontal/Median):  The coronal plane is a vertical plane that divides the body into an equal forward and backward (or anterior and posterior) section.  The coronal plane is used along with the sagittal and transverse planes in order to describe the location of the body parts in relation to one another.

Frankfurt Horizontal:  A plane used to systematically view the skull which is defined by three osteometric points:  the right and left porion points (near the ear canal, or exterior auditory meatus) and left orbitale.

Oblique Plane:  A plane that is not parallel to the coronal, sagittal or transverse planes.  The fracture to the mid shaft of the left tibia and fibula was not a transverse or spiral break, it is an oblique fracture as evidenced by the angle of the break. 

Sagittal:  A vertical plane that divides the body into symmetrical right and left halves.

Transverse:  Situated or extending across a horizontal plane.  A transverse fracture was noted on the midshaft of the right femur.  The fracture was indicative of a great force having caused it, likely in a traumatic incident.

3) b. – Anatomical Directional Terminology

Superior:  Superior refers towards the head end of the human body, with the most superior point of the human body the parietal bone at the sagittal suture (White & Folkens 2005: 68).

Inferior:  Inferior refers towards the foot, or the heel, which is the calcaneus bone.  Generally this is towards the ground.  The tibia is inferior to the femur.

Anterior:  Towards the front of the body.  The sternum is anterior to the vertebral column.

Posterior:  Towards the back of the body.  The occipital bone is posterior to the frontal bone of the cranium.

Proximal:  Near the axial skeletonThe term is normally used for the limb bones, where for instance the proximal end of the femur is towards the os coxa.

Medial:  Towards the midline of the body.  The right side of the tongue is medial to the right side of the mandible.

Lateral:  The opposite of medial, away from the midline of the body.  In the standard anatomical position the left radius is lateral to the left ulna.

Distal:  furthest away from the axial skeleton; away from the body.  The distal aspect of the humerus articulates with the proximal head of the radius and the trochlear notch of the ulna.

Internal:  Inside.  The internal surface of the frontal bone has the frontal crest, which is located in the sagittal plane.

External: Outside.  The cranial vault is the external surface of the brain.

Endocranial:  The inner surface of the cranial vault.  The brain fills the endocranial cavity where it sits within a sack.

Ectocranial:  The outer surface of the cranial vault.  The frontal bosses (or eminences) are located on the ectocranial surface of the frontal bone.

Superficial:  Close to the surface of the body, i.e. towards the skin.  The bones of the cranium are superficial to the brain.

Deep:  Opposite of superficial, i.e. deep inside the body and far from the surface.  The lungs are deep to the ribs, but the heart is deep to the lungs.

Palmar:  Palm side of the hand.  The palm side of the hand is where the fingers bear fingerprints.

Plantar:  The plantar side of the foot is the sole.  The plantar side of the foot is in contact with the ground during normal ambulation.

Dorsal:  Either the top of the foot or the back of the hand.  The ‘dorsal surface often bears hair whilst the palmar or plantar surfaces do not’ (White & Folkens 2005: 69).

3) c. – Anatomical Movement Terminology

Abduction:  Abduction is a laterally directed movement in the coronal plane away from the sagittal, or median, plane.  It is the opposite of adduction.  Standing straight, with the palm of the left hand anterior, raise the left arm sideways until it is horizontal with the shoulder: this is the action of abducting the left arm.

Adduction:  Adduction is the medially directed movement in the coronal plane towards the sagittal, or median, plane.  It is the opposite of abductionStanding straight, with the palm of the right hand anterior, and the right arm raised sideways until it is horizontal with the shoulder, move the arm down towards the body.  This is adduction.

Circumduction:  Circumduction is a ‘circular movement created by the sequential combination of abduction, flexion, adduction, and extension’ (Schwartz 2007: 373).  The guitarist who performs the action of windmilling during playing is circumducting their plectrum holding limb.

Extension:  Extension is a movement in the sagittal plane around a transverse axis that separates two structures.  It is the opposite of flexionThe extension of the forearm involves movement at the elbow joint.

Flexion:  A bending movement in the saggital plane and around a transverse axis that draws two structures toward each other (Schwartz 2007: 374).  It is the opposite of extensionThe flexion of the forearm involves movement at the elbow joint.

Lateral Rotation:  The movement of a structure around its longitudinal axis which causes the anterior surface to face laterally.  It is the opposite of medial rotation.

Medial Rotation:  The movement of a structure around its longitudinal axis that causes the anterior surface to face medially.  It is the opposite of lateral rotation (Schwartz 2007: 376).

Opposition: The movement of the ‘thumb across the palm such that its “pad” contracts the “pad” of another digit; this movement involves abduction with flexion and medial rotation’ (Schwartz 2007: 377).

4) a. – Postmortem Skeletal Change

Antemortem:  Before the time of death.  The evidence for the active bone healing on both the distal radius and ulna diaphyses, with a clean fracture indicating use of a bladed instrumented, suggests that amputation of the right hand occurred antemortem. 

Bioturbation:  The reworking of soils and associated sediments by non-human agents, such as plants and animals.  Bioturbation can lead to the displacement of archaeological artefacts and structural features and displace deposited human skeletal bone.  Evidence of bioturbation in the cemetery was noted, as irregular tunnels were located across a number of different grave contexts suggesting the action of a burrowing or nesting mammal.  This led to the disarticulation of skeletal material within the grave contexts themselves which, on first investigation, may have led to an incorrect analysis of the sequence of events following the primary deposition of the body within the grave.

Commingled:  An assemblage of bone containing the remains of multiple individuals, which are often incomplete and heavily fragmented.  The commingled mass grave found at the Neolithic site of Talheim, in modern southern Germany, suggest that, along with the noted traumatic injuries prevalent on the individuals analysed, rapid and careless burial in a so-called ‘death pit’ took place by the individuals who carried out the massacre.  The site is a famous Linearbandkeramik (LBK) location which dates to around 5000 BC, or the Early European Neolithic.  Similar period mass burials include those at Herxheim, also in Germany, and Schletz-Asparn in nearby Austria.

Diagenesis:  The chemical, physical, and biological changes undergone by a bone through time.  This is a particularly important area of study as the conservation of bones must deal with bacteria and fungal infection of conserved bone if the skeletal material is to be preserved properly.  Analysis of the diagenesis of skeletal material can also inform the bioarchaeologist of the peri and postmortem burial conditions of the individual by comparing the environmental contexts that the bone had been introduced to.

Perimortem: At, or around, the time of death.  The decapitation of SK246 occurred perimortem as evidenced by the sharp bladed unhealed trauma to the associated body,  pedicles, lamina and spinal arches of the C3 and C4 vertebrae.

Postmortem: Refers to the period after the death of the individual.  It is likely that the body had been moved postmortem as indicated by position of the body in the bedroom and by the extensive markers on the skin, suggesting physical manipulation and accidental contusions.  Further to this the pooling of the blood within the first few hours postmortem was not indicative of where the body was located at the time of discovery.

Postmortem Modification:  Modifications, or alterations, that occur to the skeletal remains after the death of the individual.  No postmortem modification of the skeletal elements of SK543 was noted, however extensive evidence of bioturbation in the form of root action was noted on across the majority (> 80%) of the surface of the surviving skeletal elements recovered.

Taphonomy:  The study of processes that can affect the skeletal remains between the death of the individual and the curation, or analysis, of the individual.  There are a variety of natural and non-natural taphonomic processes that must be considered in the analysing of human skeletal material from archaeological, modern and forensic contexts.  This can include natural disturbances, such as bioturbation, or non-natural, such as purposeful secondary internment of the body or skeletal remains.

Note on the Terminology Used & Feedback

The terminology used above, and their definitions, are taken in part from the below sources.  Direct quotations are referenced to the source and page.  They, the sources in the bibliography, are a small handful of some of the exceptional books available which help to introduce the human skeletal system and the importance of being able to identify, study and analyse the bones in a scientific manner.  The human skeletal glossary present here is subject to revision, amendments and updates, so please do check back to see what has been included.  Finally, I heartily advise readers to leave a comment if revisions, or clarifications, are needed on any of the terms or definitions used in the glossary.

Bibliography & Further Reading

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore, I., Willan, P. L. T., Bentley, A. L., Davies, J. T. & Hargreaves, J. L. 2008. Human Anatomy: Colour Atlas and Texbook (5th Edition). London: Mosby Elsevier.

Jurmain, R., Kilgrore, L. & Trevathan, W. 2011. Essentials of Physical Anthropology. Belmont: Wadsworth.

Larsen, C. S. 1997. Bioarchaeology: Interpreting Behaviour from the Human Skeleton. Cambridge: Cambridge University Press.

Lewis, M. E. 2007. The Bioarchaeology of Children: Perspectives from Biological and Forensic Anthropology. Cambridge: Cambridge University Press.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease (3rd Edition). Stroud: The History Press.

Schwartz, J. H. 2007. Skeleton Keys: An Introduction Human Skeletal Morphology, Development, and Analysis (2nd Edition). New York: Oxford University Press.

White, T. D. & Folkens, P. A. 2005. The Human Bone Manual. London: Elsevier Academic Press.

The Bone Ages: MOSI on Down to the Manchester Science Festival, Sunday 2nd Nov 2014

3 Oct

A date for the diary for all bone and science lovers!  Skeletal researchers from the University of Sheffield and Manchester Metropolitan University will be at the Manchester Museum of Science & Industry (MOSI) on Sunday 2nd of November 2014 (from 10.30 am to 4 pm) helping to present an event called The Bone Ages to the public.  The Bone Ages will bring together the social sciences and lab based research in helping to present the wonders of studying the human skeleton, detailing how bones can teach us about the history, health and society of past populations and individuals using live demonstrations.  The event will include interactive showcases and activities for children and adults of all ages, from learning about how to age and sex the skeleton to understanding what DNA testing of skeletal material can reveal.

The Bone Ages event is being run at MOSI as a part of the Manchester Science Festival (which runs from 23rd October to 2nd November), which is aimed at engaging the whole family in understanding the wonders of cutting edge science and ground shaking research.  The Manchester Science Festival is free to attend and will be running a whole host of events to do with innovative scientific topics in a variety of locations across Manchester.

boneages222

A flyer from the website advertising the Bone Ages open day. Image credit: MOSI.

So what is actually happening at the Bone Ages event?

Well there will be a host of hands on demonstrations and live shows by the researchers of the Manchester Metropolitan University and the University of Sheffield staff.  There will be four staff from MMU who each specialise in different areas of skeletal research including:

  • Dr Craig Young (human geography), who will be discussing the importance of human remains as a part of the socio-political processes linked to cultural identity.
  •  Dr Seren Griffiths (archaeology), who will provide a live demonstration of 3D laser scanning and talk about the importance of the technique to accurately digitally record excavated specimens.
  • Dr Kirsty Shaw (molecular biology), who will be demonstrating the application of miniaturized technology that allows the DNA sampling of remains in the field.
  • Dr Alex Ireland (health science), who’ll be demonstrating how scanning bones can reveal the permanent record of previous activity, to help prevent health risks in the present day population.

On top of this researchers from the University of Sheffield, including doctoral candidate Jennifer Crangle, will be discussing and highlighting the value of analysing the human skeleton, from how to age and sex remains (using casts and examples) to talking about the nature of archaeological bone, from complete to fragmented remains.  I will also be there, helping to engage the public how and why osteoarchaeologists analyse bones and generally helping out.  Alongside this I’ll also be assisting with the exciting ‘exploding skeleton’, a fun and interactive way to learn about the skeletal anatomy of the body by having members of the pubic trying to figure out what piece goes where in the human body.

The demonstrations for The Bone Ages will be taking place at the new purpose built PI: Platform for Investigation arena at the museum, which is part of a new monthly contemporary science program aimed at the bold, innovative presentation and engagement of science with the public.  I, for one, am thoroughly looking forward to this, so I hope to see you there!

Learn More

  • Look out for the #boneages hashtag on twitter for further information and updates.  There will also be a number of guest blogs produced for the Manchester Science Festival, which will also appear on the Institute of Humanities & Social Sciences Research, run by Manchester Metropolitan University.
  • The Manchester Science Festival runs from 23rd October to the 2nd of November, with events being ran all day, and for free, during these dates.  The festival will fuse art and science together in an intoxicating mix for all of the family, with topics ranging from industrial archaeology to 3D printing, from film showings to computer coding.  Find out more here.

Links of Interest!

5 Nov

A quick post whilst I prepare the next entry!  There are some pretty good blogs out there that focus on bioarchaeology and mortuary archaeology that have started up within the past few months or so, so I’d thought I’d highlight a few here:

  • Bone Broke, ran by bioarchaeology PhD student Jess Beck, has some awesome posts on identifying and siding bone fragments.  It also has a great vein of humor running through the blog as well as being wonderfully informative and knowledgeable on human osteology and anatomy.
  • Cakes and Ceramics, a brand new blog ran by Loretta Kilroe, details the adventures of a post-masters pre-PhD Egyptologist living in London.  With a research focus on ancient ceramics and excavation experience at the Post-New Kingdom site of Amara West, Sudan, under her belt you can expect some interesting upcoming posts from this blog.
  • All Things AAFS (archaeology, anthropology and forensic sciences), ran by Rosemary Helen, has some excellent posts split into useful subjects.  The Quick Tips series is particularly useful for learning about how to age a human skeleton and identify fracture types.  Expect it to be updated with various topics as the site grows.
  • Lawn Chair Anthropology, by the biological anthropology assistant professor Zachary Cofran, is an excellent site for updates on bio-anth, evolution and palaeontology.  In particular it is great to see Cofran discuss his own research in human evolution, offer his statistical code for free and regularly highlight free databases.  It is not new site by any means having previously been hosted on the Blogger format for a number of years, but it is new to the WordPress format.

Over at Spencer Carter’s blog at Microburin he has a great post up which skillfully dissects the recent one day conference held in London on archaeology pay and training.  The conference, held by Prospect and The Diggers Forum (part of the IFA), discussed issues relating to pay and performance, the chartership of archaeology, minimum benchmarks for pay and just where archaeology sits as a skilled profession in the UK, amongst many other topics of note.  It is well worth reading Spence’s blog entry (here) and my next post but one will discuss some of these issues from a field archaeologist’s view point in the latest ‘interview’ guest entry.  In the mean time enjoy these blog links above, many more can also be found in the blog roll on the bottom left of this site so get digging!

Skeletal Series 11: The Human Foot

4 Sep

The human foot is as distinctive and as complex as the human hand (D’Août et al.  2010).  The foot, or Pes, forms the distal terminus of the leg.  It helps to perform the two basic important functions of shock absorption and propulsion during bipedal locomotion, both of which require a high degree of stability.  The foot bones are the serial homologs of the hand bones an each foot individually is comprised of 26  individual skeletal elements as opposed to the hand’s 27  individual skeletal elements, indicative of the differing evolutionary roles of both limbs with the digits undergoing reduction and modification in mammals (White & Folkens 2005: 225).

As White & Folkens (2005: 292) note, the ‘human foot has changed dramatically during its evolution from a grasping organ to a structure adapted to bipedal locomotion’, where ‘mobility, flexibility and grasping ability has been lost’.  As humans are bipedal walkers the feet must take the full weight of the body during locomotion and this is reflected in hard and soft tissue anatomy (D’Août et al. 2008, D’Août et al. 2010, Gosling et al. 2008, Jarmey 2003).  The diagram below demonstrates the robust and compact nature of the pes elements.

Foooooot

The human foot, highlighting the articulated individual skeletal elements in dorsal and lateral view. Note the arch of the foot, the size of the calcaneus and general robusticity of the bones in comparison to the hand bones (Image credit: WebMD 2013).

Excavation

The excavation of the human skeleton should, where possible, be conducted with patience and great care for the recovery of all skeletal material possible (Brothwell 1981).  The elements that make up the foot, a total of 26 individual bones altogether (see below), are sturdy and largely compact bones, although it is likely that there will not be complete recovery of the distal phalanges due to their smaller size.  In supine and crouched burials the foot bones are likely to survive, although care must be taken when excavating at an unknown burial depth (Larsen 1997).  In cremation remains of individuals from archaeological sites it is still possible for certain elements to be recognised and described, especially in the case of the compact tarsal bones (Mays 1999).  In crowded burial grounds where the body is laid out in a supine position (lying flat on the back), as n the photograph below, burials often intersect each other, cutting off the lower part of the legs (Mays 1999).  This is a common feature in crowded burial grounds, and care must be taken when excavating and assigning individual skeletal elements to specific individual skeleton’s (Brothwell 1981).

bones brodsworth 07pic3 - Copy

A photograph of a Medieval burial ground near Brodsworth, Yorkshire, UK, from the 2007 excavation. Note the orientation and sequential laying of supine burials, and how the lower portion of the legs have been covered or destroyed by other burials. Courtesy of the University of Hull and the Brodsworth project.

Basic Musculature and Skeletal Anatomy

There are 26 bones in the human foot which are grouped into 7 tarsals, 5 metatarsals and 14 phalanges, for a total of 33 joints, of which 20 are actively articulated (See image below for skeletal elements in articulation, and Gosling et al. 2008, Mays 1999, White & Folkens 2005, for further reference).  The main joints of the foot itself include the transverse tarsal joint and tarsometatarsal joint (see figure below).  The talocrural (ankle) joint, the articulation between the leg and the foot, forms an important part of the stability of the foot, one of the main differences behind the pes and the manus (the wrist is extremely movable and flexible in comparison to the ankle).  Unlike the hand the foot cannot grasp and is not capable of fine motor movement, however the adipose tissue and plantar fascia (or aponeurosis) is tightly packed underneath the heel (calcaneus bone) for shock absorption during locomotion (Gosling et al. 2008: 304).  The stability of the ankle joint is strengthened by the wedge shaped articulation of the talus and calcaneus bones and by the strong collateral ligaments helping to tightly pack the anatomy during movement (Gosling et al. 2008: 304-305).

footbones

The individual sections and bones of a right sided human foot, which includes the tarsals, metatarsals, and phalanges from proximal to distal (Image credit: Encyclopedia Britannia 2007).

It is important to note here the two main arches of the human foot, the transverse arches and the medial and lateral longitudinal arches.  The functional anatomy of the arches allows the foot to remain stable during the pressures and energy exertion of locomotion but also retain flexibility so that it can grip different surfaces whilst enhancing forward propulsion (Gosing et al. 2008: 309).  The transverse arch is located along the cuneiforms, the cuboid bone and all of the metatarsal bases, and simply forms a domed shaped which strengthens the foot during locomotion.  The medial longitudinal arch is the highest of the arches and runs along the instep of the foot, alongside the calcaneus, talus, navicular, and cuneiform bones and up to the first three metatarsals (Gosling et al. 2008: 309).  The lateral longitudinal arch is lower and flatter than the media arch and runs alongside the calcaneus, the cuboid, and the fourth and fifth metatarsals (Gosling et al. 2008: 2010).

The arches are supported in their skeletal frame by a complex arrangement of extrinsic and intrinsic muscles, ligaments and tendons.  The sole of the foot contains numerous intrinsic muscles which mimic the muscles found in the hand, which include digitorum (flexor/abductor) and lumbrical muscles, whilst the plantar view houses the inter-osseus planar muscles (Gosling et al. 2008: 284).  It is worth remembering that the majority of the larger muscles that articulate and move the foot are located in the leg itself (soleus, gastrocnemius, and the anterior/posterior tibial muscles).  Although I will not discuss the soft tissues further, I highly recommend the ‘Human Anatomy Colour Atlas and Textbook’ by Gosling et al. (2008) as a key reference source.  The book has a high number of quality dissection photographs and anatomical diagrams clearly highlighting the different muscle, ligament and tendon structures.

Skeletal Elements: Tarsals

The 7 tarsal bones of the foot help to form the longitudinal and transverse arches of the foot, which is often called the tarsus.  The talus articulates superiorly with the distal tibia and fibula, the calcaneus forms the heel of the foot and supports the talus (White & Folkens 2005: 291).  The navicular sites between the 3 cuneiforms and the head of the talus (White & Folkens 2005: 292).  The 3 cuneiforms and the cuboid act as a second row of tarsal bones and articulate with the proximal heads of the 5 metatarsals.

tarsals_labeled

Dorsal view of the tarsal elements and proximal metatarsals (Image credit: University of Cincinnati).

The Talus

The talus (astragalus in animals) is the 2nd largest tarsal and sits atop of the calcaneus, between the tibia and the fibula.  It is distinct in it’s saddle shape, with a head (that sides medially when viewed from above) and a body that forms the posterior portion of the bone.

The Calcaneus

The largest tarsal, forming the heel bone, the calcaneus is located inferior of the talus and supports the distal portion of the foot.  An intact calcaneus is extremely distinct, and can be sided by placing the ‘heel’ away from you and the articular surfaces superiorly, and the shelf (sustentaculum tali) should point the side it is from.

The Cuboid

The cuboid is located on the lateral side of the foot, between the calcaneus and the 4th and 5th metatarsals.  It is distinct in appearance because of its large size with a cuboidal body.  There is no articular surface on the lateral side of the bone, and the inferior surface has a pronounced cuboid tuberosity.

The Naviculuar

The navicular sits snugly between the talus and the cuneiform elements, and has a distinct concave proximal surface.  A tubercle points medially when viewed from the view of the talus.  It is similar in shape to the scaphoid carpal.

The Cuneiforms:

Medial

The medial cuneiform is the largest of the three cuneiforms, sitting between the navicular and base of the first metatarsal.  It is less of a wedge shape than the other two cuneiforms, and distinguished by it’s ‘kidney-shaped facet for the base of the first metatarsal’ (White & Folkens 2005: 298).

Intermediate

This cuneiform is the smallest of the cuneiforms and is located between navicular and the 2nd metatarsal base.  It articulates on either side with the lateral and medial cuneiforms.  The non-articular dorsal surface is key for siding, with a projecting surface points towards the side it comes from when the concave facet is pointed away from the holder (White & Folkens 2005: 298).

Lateral

Located at the centre of the foot, and intermediate in size between the intermediate and medial cuneiform, the lateral cuneiform sits at the base of the foot.  It articulates distally with the 2nd, 3rd and fourth metatarsal bases, proximally with the navicular, medially with the intermediate cuneiform and laterally the cuboid (White & Folkens 2005: 299).

Metatarsals

The 5 rays of the metatarsals are typically labelled as MT 1-5, with MT1 representing the hallux, or the big toe (as the thumb is named the pollex).  The metatarsals are all ‘tubular bones with rounded distal articular facets (heads) and more squarish proximal ends (bases)’ (White & Folkens 2005: 300).  They are more easily sided by the morphology of their bases.  It is important to note that each of the tarsals in the distal row (either of the 3 cuneiforms or the cuboid above) articulates with one or more of the metatarsal bases (White & Folkens 2005: 300).  The first metatarsal is the most massive and squat, whilst all non hallucial metatarsals articulate with each other.  The fifth metatarsal bears a distinctive blunt styloid process on it’s lateral side that makes it fairly identifiable.

metatarsal-phalangeal-joint

A basic dorsal view of the metatarsal and phalangeal bones in the right foot. Note that the hallux (first digit medially) has only a proximal and a distal phalanx whilst the other digits have a proximal, intermediate and distal phalanx (Source).

Phalanges

The foot phalanges are the same in design as the hand phalanges with heads, bases and shafts but are much shorter and squatter than the hand phalanges.  Again they come  in three rows, with 5 proximal phalanges4 intermediate phalanges and 5 distal phalanges;  it should be noted that the MT1 hallux has, as does the thumb (pollex), only the proximal and distal phalanges with no intermediate phalanx, and is remarkably more chunkier then either of the other four rays.

Each Proximal Phalanx displays a ‘single, concave proximal facet for the metatarsal head and a spool-shaped surface distally’ (White & Folkens 2005: 306).

Each Intermediate Phalanx displays a ‘double proximal articular facet for the head of the proximal phalanx’, and again have a trochlea shaped distal articular facet (White & Folkens 2005: 306).

Each Distal Phalanx displays a double articular proximal facet for the head of the intermediate phalanx and a terminal tip of the bone, resulting in a non-articular pad (White & Folkens 2005: 307).

These phalanges are all much shorter than their companions in the hand, with the foot phalanges having a more circular shaft cross section compared to the D shape  shaft of the hand phalanges.  Foot phalanges generally display a more constrictive shaft than hand phalanges, although it can be difficult to side them and it is best done with a full replica or whole specimens for comparative analysis (White & Folkens 2005: 308).  

Further Online Sources

  • A detailed map of each element and the surrounding musculature (as well as relaxing classical music!) can be found on the website of the UMFT Department of Anatomy and Embryology site.  Be aware there are detailed anatomical prosection and dissection diagrams, but it is a free, fascinating and wonderful source (and with the music especially relaxing!).
  • A number of websites have detailed diagrams and photographs of the foot from a medial/lateral and a dorsal/planar view, including this site and this one.
  • Finally, do you know your tarsal bones? Test yourself here!

Bibliography

Brothwell, D. R. 1981. Digging Up Bones: The Excavation, Treatment and Study of Human Skeletal Remains.  Ithica: Cornell University Press.

D’Août, K., Pataky T.C., De Clercq, D. & Aerts, P. 2009. The Effects of Habitual Footwear Use: Foot Shape and Function in Native Barefoot Walkers. Footwear Science1 (2): 81. doi:10.1080/19424280903386411 

D’Août, K., Meert, L., Van Gheluwe, B., De Clercq, D. & Aerts, P. 2010. Experimentally Generated Footprints in Sand: Analysis and Consequences for the Interpretation of Fossil and Forensic Footprints. American Journal of Physical Anthropology141: 515–525. doi: 10.1002/ajpa.21169

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore I., & Willan P. L. T. 2008. Human Anatomy Color Atlas and Text Book. Philadelphia: Mosby Elsevier.

Jarmey, C. 2003. The Concise Book of Muscles. Chichester: Lotus Publishing. 

Jurmain, R. Kilgore, L. & Trevathan, W.  2011. Essentials of Physical Anthropology International Edition. London: Wadworth.

Larsen, C. 1997. Bioarchaeology: Interpreting Behaviour From The Human Skeleton. Cambridge: Cambridge University Press.

Marsland, D. & Kapoor, S. 2008. Rheumatology and Orthopaedics. London: Mosby Elsevier.

Mays, S. 1999. The Archaeology of Human Bones. Glasgow: Bell & Bain Ltd.

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Skeletal Series Part 10: The Human Leg

15 Mar

We shall continue our look at the human skeleton with the next installment of the Skeletal Series blog posts with a consideration of the leg elements.  Previously covered was the hip and we shall now cover the femur (upper leg), patella (kneecap) and the tibia and fibula (the two lower leg elements).  The evolution of the leg mirrors that of the arm, from ancient fins to rod bearing segments, and as per the arm the leg contains a single upper bone with two lower bones making up the limb ending in the quite unique foot or Pes (White & Folkens 2005: 255).

The femur is the human body’s longest and sturdiest bone that helps to take the whole weight of the body during ambulation (Schwartz 2007: 151).  The tibia is the larger of the lower leg bones and it is easier to tell it apart from its slimmer lateral partner, the long and angular fibula.  The patella is the body’s largest sesamoid bone, safely ensconced in its muscle pouch in the anterior portion of the knee.  The human knee is particularly interesting as it ‘locks’ when stood straight up and unlocks with the aid of the popliteus muscle by laterally rotating the distal femur, which helps critically stabilise the knee.

The basic bones of the human leg (Image credit: Sheri 2012).

Excavation

During excavation of the supine skeleton in-situ, the lower limb bones tend to survive well because of their structural design and bone density.  In extended burials, and dependent on burial and soil conditions, the lower limb bones are often well-preserved and relatively easy to distinguish from the rest of the body.  As always, care must be taken when excavating the soil on top of and around the lower body.  The fibula can often be found fragmented or broken due to its lateral positioning and the effect of the weight of the soil and associated tibia lying close to it (Larsen 1997).  Even in cremated or burned skeletal tissue samples, particular features and landmarks of the lower limb long bones can easily be identified, and sometimes even sided as larger fragments can sustain slightly higher temperatures and minimal warping (White & Folkens 2005).

A medieval cemetery excavation during the 2007 Brodsworth community project (Image credit: the universities of Hull & Sheffield field school).

Leg Anatomy and Elements

The lower limb in the modern human is an interestingly adapted limb to bipedal walking, and as such it has changed anatomically from our nearest cousins (the great apes) to cope with our locomotion (Jurmain et al. 2011).  In this section we’ll cover the basic gross anatomy of each bone with a more in-depth look at the knee component after.  As mentioned elsewhere (and on this blog herelong bone growth is typically through the distal metaphysis (distal border of the diaphysis of the limb) and its epiphysis through the growth plate.

Growth of the long bones in a juvenile knee joint (the femur is located proximally, with tibia distal and fibula laterally. (Image credit: Danna 2011).

Femur

The femur, as stated, is the longest limb bone with several distinctive bony elements.  It is a fairly distinct bone with a high level of robusticity and dense, compact bone due to it being the main supporting limb doing ambulation.  The head of the femur fits into the acetabulum of the hip bone (ilium, ischium and pubis bones).   Unlike the humerus and the glenoid cavity joint, it has a direct ligament attachment between femoral bone and acetabulum, the ligamentum teres, which fits it snugly from the fovea capitis depression on the femoral head into the hip joint, helping to stabilise the joint (White & Folkens 2005: 255).  It is also heavily walled with muscles, from the trunk of the torso down to the knee, with the gluteal (lateral-posterior),  adductors (medial), quadriceps (anterior) and hamstring (posterior) muscle groups acting on the bone at various points (Gosling et al. 2008).  

Main anatomical landmarks of the femur.  For further information see Hawks 2011.

The main osteological features found on the femur include the greater and lesser trochanter’s, which are found in the proximal half of the femur, just below the femoral neck.  The greater and lesser trochanter’s act as muscle attachment sites for the gluteal muscles, amongst others, and sometimes a third trochanter can been seen just distal of the lesser (White & Folkens 2005).  Directly posterior, and running down the length of the shaft of the femur, is the linea aspera, one of the main attachment points for a variety of muscles, including the vastus and adductor muscle groups.

At the proximal femoral end the linea aspera collects the spiral, pectineal and gluteal lines (White & Folkens 2005: 257).  The lateral and medial condyles mark the distal articular surface with the tibia bone of the lower limb.  Alongside the medial edge of the medial epicondyle (just above the medial condyle) lies the adductor tubercle, the insertion point for the adductor magnus muscle (Gosling et al. 2008: 260).  The femur can be easily sided as the trochanters are medial and posteriorly positioned, with the linea aspera running directly posteriorly and the adductor tubercle located medially on the medial epicondlye.  The mid-section shaft of the femur is tear shaped, with the round body in the anterior position and the top of the  ‘tear’ pointing posteriorly.

Patella

The patella is the human skeletal systems largest sesamoid bone, and can be found in the anterior muscular pouch on the knee joint, anchored by the quadriceps tendon and patellar tendon on the distal anterior femoral surface (see diagram below).  It does not attach or articulated directly with any other bone.  The patella functions to ‘protect the intricate muscles and ligaments inside the knee joint, to increase area of contact between the patellar ligament and the femur, and to lengthen the lever arm of the quadricep muscles’ (White & Folkens 2005: 270).  The apex of the patella is the most distal point of the bone, and the smooth posterior articular facet rides the ligaments and muscles located anteriorly of the distal femur.

knee joint

The complex knee joint and associated ligaments that keep the joint stable. Image credit: The Healthy Dancer.

Tibia

The tibia is a distinctly shaped bone with an proximal medial and lateral condyles, medial and laterally intracondylar eminence’s (set posteriorly on the superior surface), an anterior proximal tibial tuberosity, the curved ‘tri-blade’ of the body (anterior, medial and posterior crests, with the medial malleolus marking the distal extremity of the bone (White & Folkens 2005: 273-79).  The landmarks on the tibia represent muscle origin and insertion points, such as the soleal line on the posterior aspect of the proximal tibia, which represents the soleus muscle origin.  The tibia is connected to the laterally positioned fibula with a strong interosseus membrane connecting the two throughout the length of the fibula, with articulations at the proximal and distal segments of the tibia (Gosling et al. 2008: 277).  Distally, the tibia articulates with the talus, the first tarsal bone of the foot.  To easily side the tibia, the malleolus is located on the medial distal aspect of the tibia, and the tibial tuberosity represents the anterior facing proximal end of the bone.

Labelled Tibia and Fibula.

The main anatomical landmarks of the right tibia and fibula, with the anterior position on the left and the posterior on the right hand side. (Image credit: Wikipedia 2012).

Fibula

The fibula is the thinner of the two lower legs bones, and does not bare any substantial weight (White & Folkens 2005).  It’s primarily importance is providing the lateral border of the ankle joint, with which it articulates with the calcaenous bone.  The head of the fibula, located superiorly, can be easily complicated with the distal malleolar articular surface, and to add to the woes of identification, the body of the fibula, without the proximal or distal segments, is nearly impossible to identify because of its irregularity.  The interosseous crest is located medially, and serves as the attachment for the interosseus membrane which spans between the length of the tibia and fibula.  To side an intact fibula quickly, use the posterior facing malleolar fossa, which can be found on the distal articular surface of the fibula.  The fibula has also been used as marker of sex (Sacragi & Ikeda 1995) and although this method is rarely used, it could be useful in a forensic or archaeological context where the skeletal remains may be limited.

Further Information

  • Although not mentioned here, please take the time to get associated with the fleshy articular pads between the femur and tibia (be aware as this is a fleshed photo).

Bibliography

Gosling, J. A., Harris, P. F., Humpherson, J. R., Whitmore I., & Willan P. L. T. 2008. Human Anatomy Color Atlas and Text Book. Philadelphia: Mosby Elsevier.

Hawks, J. 2011.  Femur: major landmarks and how to side it. From www.johnhawks.net. Accessed 2012.

Jurmain, R. Kilgore, L. & Trevathan, W.  2011. Essentials of Physical Anthropology International Edition. London: Wadworth.

Larsen, C. 1997. Bioarchaeology: Interpreting Behaviour From The Human Skeleton. Cambridge: Cambridge University Press.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease Third Edition. Stroud: The History Press.

Sacragi, A & Ikeda, T. 1995. Sex Identification From The Distal Fibula. International Journal of Osteoarchaeology. 5: 139-143. (access required).

Schwartz, J. H. 2007. Skeleton Keys: An Introduction to Human Skeletal Morphology. New York: Oxford University Press.

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

Skeletal Series Part 9: The Human Hip

22 Jan
In this post I shall be discussing and looking at the three main elements that make up the human pelvis (or the pelvic girdle, a homology to the shoulder girdle).  The bones that make up the pelvis are the Ischium, Ilium & the Pubis.  The Sacrum has been discussed in an earlier post on the spine.  During the development of the hip, these three elements remain singular, fusing together during adolescence to become one single unit during early maturity to become the Os Coxa (White & Folkens 2005: 246).

The main elements in the human hip, and as a whole Referred to as the Os Coxa. NB acetabulum faces laterally.

The hip is a fantastic wealth of skeletal knowledge.  The two most basic and fundamental traits of the person, the age and biological sex of the individual, can be found in articles by Brooks & Suchey (1990) and by Patriquin et al. (2005), which both use morphological features of the pelvis to estimate sex and age of the individual under study.  Many muscles also insert and attach along the borders, rims and edges of the pelvis, especially anchoring those that are key in movement during bipedal locomotion (Schwartz 2007: 147).  The hip, and its component parts, are most distinctive in shape and size.  Odd looking, hard to figure out at first, and looking like nothing else (a top heavy hourglass is one view), the Os Coxa can can be hard to identify and orientate, especially in smaller fragments.

Juvenile ilium (top), ischium (bottom right) and pubis (bottom left) (Image credit: Bone Clones 2006).

Excavation
Unfortunately during excavation, the first thing that the pick ax, spade or trowel is likely to hit is the most anterior part of the hip, the pubic symphysis, as in most human burials the body lies prone and face up, in a supine burial (see Brothwell: 3 for other burial positions).  This can lead to destruction of this joint, which can lead to loss of information on age and sex of the individual.  However, during normal inhumation excavation the grave cut can be clearly distinguished, and a pattern of working from top to bottom or bottom to top can help limit the amount of damage during excavation (White & Folkens 2005).

The author excavating a Medieval skeleton in Germany in 2011. Note the damaged anterior aspect of the Pubic Symphysis, which is outlined in red.

Pelvic Anatomy and Elements:
Acetabulum
The acetabulum  makes up the socket to receive the head of the femur (thigh), and is equally made up of a portion of the three elements of the hip which fuse during early adolescence.  This joint is necessarily much more stable then the non-weight bearing shoulder joint- it is much deeper, has the ligamentum teres (a ligament that attaches to the femoral head and the hip) and is covered by much stronger and denser musculature (White & Folkens 2005: 246).  As the main weight bearing joint, the bone is also much denser with thicker cortical bone.
Ilium
The ilium is the largest of the three parts of the os coxa, and sits superiorly above the ischium and pubis, and it is often described as ‘blade like’ (Schwartz 2007: 148) as it is a thin but strong plate of curved bone.  On the lateral side of the blade, three gluteal lines (anterior, inferior & posterior) are visible which are the muscle attachment sites for the large gluteal muscles.  The main landmarks along the upper ridge is the iliac crest, which can be felt on yourself, and begins anteriorly with the anterior superior iliac spine and ends in the posterior superior iliac spine (White & Folkens 2005: 247).  The auricular surface of the medial ilium articulates with the sacrum (and is a very useful age estimator- Buckberry & Chamberlain 2002).  The greater sciatic notch is also generally a good indicator of the biological sex of the individual.

Anatomical landmarks on the right hip (Image credit: Pearson Education 2010).

Ischium
The ischium is the butt bone, literally the bone which takes the weight whilst we are sitting on a chair!  The key features of this element of the hip is that a lot of muscles attach to the posterior ischial tuberosity.  The ischial tuberosity muscle attachments include the origins of the hamstring muscles (semimembranosus, semitendinosus, adductor magnus & biceps femoris) (White & Folkens 2005).  Alongside the pubic bone, the ischium also includes the obturator foramen, a gap (in life covered by a membrane) where a number of internal gluteal muscles converge and provide stability for the hip.
Pubis
The pubic bone makes up the anterior part of the hip as a whole and includes a cartilaginous joint, just above the genitalia in living individuals.  The pubic symphysis, as this joint is called, is also a good indicator of biological sex because of the shape below it (the  pubic arch) and also age because of age related changes in the bony surface of the pubic symphysis (Schwartz 2007: 230).  The pubic bone also includes a superior and inferior pubic ramus, literally the corpus of the bone, which help support numerous muscle attachments, namely the adductors (adductor brevislongus & magnus) of the medial compartment of the thigh.

The  major landmarks of the pelvic bones in anatomical position.

Discussion

For the discussion on the hip we shall talk about septic arthritis (SA).  SA is mostly common in the hip and knee, and rarely presents in the elbow or shoulder.  Although it is rare in the archaeological record, it is nonetheless recorded in a number of examples (i.e. Yukon individuals in the Natural Museum of National History in Washington, US), and it pays to be able to recognise it (Roberts & Manchester 2010: 154).  The condition is fairly uncommon, and the aetiology of SA is when an infection reaches a joint, normally through one of three means- i) the haematogenous route (most common), ii) a penetrating injury or iii) its spread from metaphysis (Marsland & Kapoor 2008).  The bacteria, or germ, normally infects the synovial fluid which may be inflamed from disease or trauma, and ‘proliferation of bacteria cause an inflammatory response by the host with numerous leucocytes migrating into the joint’ (Marsland & Kapoor 2008: 136).

Main outcome of septic arthritis (Image credit: http://www.aidmyarthritis.com).

At this point the variety of enzymes and breakdown products that are produced helps to damage the articular cartilage very quickly, and if left will produce permanent damage (Waldron 2009: 89).  The prognosis is good if treated promptly, however in the archaeological record this is quite unlikely due to the high risks of re-infection and complications such as joint destruction, avascular necrosis (mostly at the hip) & the ‘seeding of infection’ to other places (Marsland & Kapoor 2008: 137).  Again, the diagnosis of septic arthritis in the archaeological record is hindered by confusion with similarities to tuberculous infection, and difficulties in diagnosing multiple diseases that may present themselves on any one individual (Roberts & Manchester 2010: 154).  In the hip, the surface and surrounding area (lunate surface) of the acetabulum would be highly damaged, with a rough appearance and feeling as the bony lytic destruction took hold (Waldron 2009).

Bibliography

Brooks, S. & Suchey, J. M. 1990. Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks methods. Human Evolution 5– N.3: 227-238.

Brothwell, D. R. 1981. Digging Up Bones: The Excavation, Treatment and Study of Human Skeletal Remains.  Ithica: Cornell University Press.

Buckberry, J.L. & Chamberlain, A.T.  2002.  Age estimation from the auricular surface of the ilium: a revised methodAmerican Journal of Physical Anthropology 119: 231-239.

Larsen, C. 1997. Bioarchaeology: Interpreting Behaviour From The Human Skeleton. Cambridge: Cambridge University Press.

Marsland, D. & Kapoor, S. 2008. Rheumatology and Orthopaedics. London: Mosby Elsevier.

Mays, S. 1999. The Archaeology of Human Bones. Glasgow: Bell & Bain Ltd.

Patriquin, M.L., Steyn, M. & Loth, S.R. 2005.  Metric analysis of sex differences in South African black and white pelvesForensic Science International 147: 119-127.

Roberts, C. & Manchester, K. 2010. The Archaeology of Disease Third Edition. Stroud: The History Press.

Schwartz, J. H. 2007. Skeleton Keys: An Introduction to Human Skeletal Morphology. New York: Oxford University Press.

Waldron, T. 2009. Palaeopathology: Cambridge Manuals in Archaeology. Cambridge: Cambridge University Press.

White, T. & Folkens, P. 2005. The Human Bone Manual. London: Elsevier Academic Press.

2011 In Review

1 Jan

So it seems as if a few archaeological blogs are posting stats up for year in the form of the annual reports for their blogs- here is mine!

Admittedly it is not very exciting reading, but it is good to know that this blog attracts a general worldwide readership.  I dearly hope that some good, and maybe even some learning, comes from reading my posts.  As always, please feel free to comment on any mistakes or exciting things or finds I have made or would find interesting.  One day I will revamp this blog to make it more user friendly (apologies for the awesome/horrible graphics and colour collisions!).

2011 has been full of beautiful surprises and adventures to far away lands.  I’ve thoroughly enjoyed every minute, and have been thankful to the wonderful people I have met in the course this year, and in the adventures of digging, researching, revising, dissecting & osteologising!  So, if you are reading this and you know me, thank you for making it a wonderful year.

I’ve finally took part in a cemetery excavation, not in the UK, but in Germany courtesy of Grampus Heritage, I’ve made and met many intelligent and interesting friends on a new university course, & I’ve gained valuable skills and knowledge from experts.

The WordPress.com stats helper monkeys prepared a 2011 annual report for this blog.

Here’s an excerpt:

The Louvre Museum has 8.5 million visitors per year. This blog was viewed about 130,000 times in 2011. If it were an exhibit at the Louvre Museum, it would take about 6 days for that many people to see it.

Click here to see the complete report.

I’ve also made it onto this list here- http://www.online-biology-degree.com/human-biology, and been linked in various other blogs, which is good to know.

Although I have not updated this blog properly in regards to the Skeletal Series posts, I always welcome guest posts and other archaeological/osteological/forensic guest articles.  Please feel free to email me or leave a comment below.  I always want to take this opportunity to thank those who have emailed me with interesting articles, tales of bones found and nods to new research and updates.  It is thoroughly welcome, so cheers for taking the time to contact me.

I hope every reader has a happy, safe and wonderful 2012.  Thank you once again for reading the ramblings of a graduate student!

A Quick Update..

11 Oct

Firstly, my apologies for not updating this blog as of late.  I have started head on into the the Osteology program now.  As discussed in my blog entry below, my modules for the first semester include Human Osteology, Human Anatomy, Funerary Archaeology & Biological Anthropology 1.  The human anatomy module is providing to be a steep learning curve as each new group of muscles are introduced each week via the lecture and then the dissection class.  Keeping on top of the new muscles as well as learning their origin, insertion, innervation and action is proving to be difficult!

I will update this blog in time but it may be longer between posts. I’ll be back shortly…

To be back digging up the skeleton and not having to contend with muscles....

....and to be able to swim in the lake afterwards!